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FOREWORD 

1. This handbook is approved for use by all Departments and Agencies of the 
Department of Defense (DoD). 

2. The purpose of this handbook is to promote the timely development, production, 
modification, fielding, and sustainment of affordable and capable DoD systems by 
addressing manufacturing risks and issues throughout the program acquisition cycle. It is 
based upon practices developed by multiple, joint government/industry teams and the 
SAE G-23 Manufacturing Management Committee, which developed and published 
SAE AS6500, “Manufacturing Management Program.” 

3. This handbook is intended to be used in conjunction with AS6500. This 
handbook provides additional explanations of the practices in AS6500, as well as guidance 
on contractually implementing AS6500 in DoD contracts. 

4. Comments, suggestions, or questions on this document should be addressed to the 
Engineering Standardization Branch, AFLCMC/EZSS, Wright Patterson AFB OH 
45433-7501 or emailed to ENGINEERING.STANDARDS@US.AF.MIL. Since contact 
information can change, the currency of this address can be verified by using the ASSIST 
Online database at https://assist.dla.mil. 
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1. SCOPE.  

1.1 Scope. This handbook is applicable to all phases of DoD system acquisition. This 
handbook describes proven manufacturing management practices to promote delivery of 
affordable and capable weapon systems. This handbook provides standardized guidance for 
DoD implementation of SAE AS6500, “Manufacturing Management Program.” 

2. APPLICABLE DOCUMENTS. 

2.1 General. The documents listed below are not necessarily all of the documents 
referenced herein, but are those needed to understand the information provided by this 
handbook. 

2.2 Government Documents 

2.2.1 Specifications, standards, and handbooks 
DOD-STD-2101 Classification of Characteristics 

(Copies of this document are available online at https://assist.dla.mil.) 

2.2.2 Other Government documents, drawings, and publications. The 
following Government documents, drawings, and publications form a part of this 
document to the extent specified herein. 

DEPARTMENT OF DEFENSE 
DoD Manufacturing Technology 
Program 

Manufacturing Readiness Level 
(MRL) Deskbook 

(Copies of this document are available online at http://www.dodmrl.com/.) 

Joint Aeronautical Commander’s Group Aviation Critical Safety Item  
Management Handbook 

(Copies of this document are available online at https://dap.dau.mil/Pages/Default.aspx.) 

UNITED STATES NAVY 
NAVSEA INSTRUCTION 9078.1 Naval Ships Critical Safety Items 

Program, Non-Nuclear 

(Copies of NAVSEA Technical Manuals can be accessed through NAVSEA's 
Technical Data Management site at https://mercury.tdmis.navy.mil/Default.cfm.) 

NAVSO P-3687 Producibility System Guidelines 

(Copies of NAVSO Technical Manuals can be accessed through 
https://acc.dau.mil/CommunityBrowser.aspx.) 

2.3 Non-Government publications. The following documents form a part of this 
document to the extent specified herein. 
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IEEE 15288.2 IEEE Standard for Technical Reviews and Audits on Defense Programs 

(Copies of this document are available online at http://standards.ieee.org/index.html.) 

ISO 9001  Quality management systems – Requirements 

(Copies of this document are available online at http://www.iso.org/iso/home.htm.) 

SAE AS5553 Fraudulent/Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, 
and Disposition 

SAE AS6500 Manufacturing Management Program 

SAE AS9100 Quality Management Systems - Requirements for Aviation, Space and 
Defense Organizations 

SAE AS9102 Aerospace First Article Inspection Requirement 

SAE AS9103 Aerospace Series - Quality Management Systems - Variation Management 
of Key Characteristics 

SAE J1739 Potential Failure Mode and Effects Analysis in Design (Design FMEA), 
Potential Failure Mode and Effects Analysis in Manufacturing, Assembly 
Processes (Process FMEA), and Effects Analysis for Machinery 
(Machinery FMEA) 

(Copies of these documents are available online at http://www.sae.org/.) 

 

3. DEFINITIONS 
This handbook is intended to be used in conjunction with SAE AS6500. Refer to 
SAE AS6500 for manufacturing-related definitions. 
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4. INTRODUCTION 

4.1 Purpose. The purpose of this handbook is to promote the timely development, 
production, and fielding of affordable and capable weapon systems by addressing 
manufacturing risks and issues throughout the program acquisition cycle. Its primary focus is 
to assist in the contractual application of SAE AS6500, “Manufacturing Management 
Program,” and to provide additional guidance on the implementation of best practices for 
manufacturing management. 

4.2 Statement of the problem. In the past, the goal of developing and deploying 
economically supportable weapon systems capable of meeting all functional user 
requirements has been proven difficult to achieve. Historically, two basic problems have 
been experienced to varying degrees by weapon system acquisition programs: (A) difficulty 
in developing and producing new weapon systems, modifications, and upgrades in a timely 
and affordable manner; and (B) difficulty in smoothly transitioning an acquisition program 
from development to production and fielding supportable systems. 

4.2.1 Difficulty in developing and producing new weapon systems, 
modifications, and upgrades in a timely and affordable manner. The difficulty in 
fielding mature systems in a timely and cost effective manner has been a persistent 
problem experienced in nearly every program. Technical and quality requirements are not 
adequately identified and communicated to contractors resulting in an increase in process 
variation and product costs. During development and production, frequent modifications to 
design specifications result in high initial acquisition costs. Lack of manufacturing 
maturity creates production schedule delays and additional engineering modifications. Late 
deliveries and the inability of the system to meet all requirements impact the warfighter by 
delaying Required Assets Availability (RAA) and reducing operational capability. Poor 
quality, high initial repair rates, unexpected failure modes, and numerous configuration 
changes impact the support community through the need for more spares, excessive failure 
analyses and corrective actions, more complex configuration tracking systems, and 
numerous technical order changes. These problems result in increased costs and potential 
inability to maintain adequate operational capabilities. 

4.2.2 Difficulty in smoothly transitioning an acquisition program from 
development to production and fielding supportable systems. Most modern acquisition 
programs have experienced problems in transitioning from development to production. 
Symptoms include poor quality and low yields of key manufacturing processes, inability to 
support production rates using processes used in development, cost increases, and schedule 
delays while production capable processes are being developed. These problems can be 
linked to  

a. lack of an effective plan for the development and maturation of production 
processes during pre-production acquisition phases concurrent with product development 
and ineffective conduct of production readiness reviews. 

b. lack of understanding of the relationship between key design requirements, the 
processes needed to support them, and the impact on product performance, supportability, 
and cost. 
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c. ineffective risk assessment, mitigation, and monitoring activities supporting 
critical process development. 

d. lack of clear and concise vertical and horizontal communication links 
throughout the supply chain. Process capability, process stability, and process controls are 
both quality and manufacturing management considerations and there is mutual overlap 
and interdependencies between the two functions. 

4.2.3 Root cause. A major source of these problems is the lack of thorough 
consideration of the capability and stability of manufacturing processes to support 
production of weapon system products. This problem can be characterized with the 
following statements: 

4.2.3.1 Inadequate response to production risk. Risk factors that pose 
production risk factors from the start of the program are caused by: 

a. lack of understanding of existing process capabilities (process characterization). 

b. limited source selection criteria related to process capability. 

c. no long-range production investment strategy as part of the overall acquisition 
strategy. 

d. unstable requirements and no reasonable match between requirements and 
existing process capabilities. 

e. lack of programmatic focus on the need for balanced simultaneous product and 
process development. 

4.2.3.2 Lack of attention to process capability. Risk factors during project 
development are due to: 

a. insufficient or untimely consideration of producibility analyses. 

b. product design instability resulting from an emphasis on meeting performance 
requirements without consideration of producibility. 

c. insufficient identification of key product characteristics and key manufacturing 
processes. 

d. late initiation of production planning and risk mitigation efforts. 

e. lack of exit criteria for key processes and a lack of process related milestones. 

4.2.3.3 Lack of consideration of process control. Risk factors that occur 
during production are due to: 

a. lack of process control requirements for key characteristics and critical 
manufacturing processes. 

b. deficiency in process improvement efforts. 

c. lack of hard cost control requirements or incentives to control / reduce life 
cycle cost. 
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4.3 Success criteria. To achieve the MIL-HDBK-896A purpose, the following 
success criteria and supporting practices should be applied. 

4.3.1 Balance product and process. Achieve balance in the consideration of 
product and process capability at the start of every phase of the acquisition process by: 

a. balancing investments in both product and process during the preproduction 
program phases. 

b. considering process capability in the technology development and technology 
insertion efforts. 

c. incorporating evaluation criteria for production process capability in source 
selection with firm requirements for such issues as process development, process 
validation, process control, and production cost estimation. 

d. implementing a well-defined production investment strategy as part of the 
overall acquisition strategy. 

4.3.2 Balance product and process development. Achieve balance in the 
development of product and process during each phase of acquisition by: 

a. identifying exit criteria for all key events and milestones appropriate to 
developing, establishing, and validating required process capabilities. 

b. stabilizing the product design early in the development program through 
balanced trades between performance, cost, and schedule, with attention to producibility 
and supportability. 

c. considering production-related issues such as Special Tooling, Special Test 
Equipment, and Support Equipment (ST/STE/SE) design and fabrication; and use of actual 
production processes to fabricate, assemble, and test prototype equipment to prove the 
manufacturing process. 

d. using modeling and simulation of the design, production, and support 
environments. 

4.3.3 Define the development and manufacturing environment. Establish 
a development and manufacturing environment that implements the practices of key 
characteristics, process controls, variability reduction, and defect prevention by: 

a. requiring flow down practices which identify key product characteristics, key 
production processes, and key process parameters throughout the supply chain. 

b. defining process control practices identified in the build-to data package. 

c. implementing efficient variability reduction programs which improve 
dimensional control, yield higher product/process quality and reliability, and create an 
environment of preventive rather than corrective action. 

4.4 Benefits. MIL-HDBK-896A practices represent a significant change in the way 
the defense industry operates. Achieving the full range of benefits available from the 
practices will require basic cultural changes on the part of all parties involved, from users 
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through low-tier suppliers. Some of the practices will require an up-front investment of 
material and/or labor during early development, with returns not realized until later in 
development and production. The commitment to make these up-front investments and 
continue the MIL-HDBK-896A practice activities throughout the life of the program is 
essential. The benefits resulting from implementation of MIL-HDBK-896A practices 
include: 

a. shorter development schedules and reduced cycle times. 

b. better product quality and reliability. 

c. better development of robust product designs. 

d. easier transition of designs to production. 

e. better supplier product integration. 

f. better risk management. 

4.5 Relationship to airworthiness certification. Airworthiness certification, as 
governed by MIL-HDBK-516, contains specific manufacturing and quality criteria that must 
be met to attain airworthiness certification. These criteria include identification of key 
characteristics and critical processes, establishment of capable processes, and implementation 
of an effective quality system and process controls to ensure design tolerances are met. The 
practices within SAE AS6500 and this handbook are intended to satisfy those criteria. When 
SAE AS6500 is on contract and implemented effectively, the manufacturing and quality 
airworthiness criteria should be achieved. However, it is the responsibility of the Chief 
Engineer to verify the criteria have been met. 

4.6 Relationship of SAE AS6500 to Manufacturing Readiness Level (MRL) 
Criteria. Manufacturing Readiness Levels (MRLs) are used to assess manufacturing risk and 
readiness. They provide a common understanding of the relative maturity, identification, and 
mitigation of manufacturing risks. TABLE I shows how the requirements of SAE AS6500 
relate to the MRL threads. If the requirements of SAE AS6500 are effectively implemented, 
there is a high probability that the associated MRL thread will be at the target level.  
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TABLE I. Cross reference of MRL threads to SAE AS6500 requirements. 

MRL Thread SAE AS6500 Requirement 

Technology and Industrial Base 6.4.1 Supply Chain and Material Management 

6.4.2 Manufacturing Technology Development 

Design 6.2.1 Producibility Analysis 

6.2.1c Design Trade Studies 

6.2.2 Key Characteristics 

6.2.3 Process FMEAs 

Cost & Funding 6.4.3 Cost 

Materials 6.4.1 Supply Chain and Material Management 

6.5.8 Supplier Management 

Process Capability & control 6.4.4 Manufacturing Modeling & Simulation 

6.5.3 Continuous Improvement 

6.5.4 Process Control Plans 

6.5.5 Process Capabilities 

Quality Management 6.3 Manufacturing Risk Identification 

6.5.2 Manufacturing Surveillance 

6.5.3 Continuous Improvement 

6.5.7 FAIs/FATs 

6.5.8 Supplier Management 

6.5.9 Supplier Quality 

Manufacturing Workforce 6.4.6 Manufacturing Workforce 

Facilities 6.4.7 Tooling/Test Equipment/Facilities 

Manufacturing Management 6.4 Manufacturing Planning 

6.4.5 Manufacturing System Verification 

6.5.1 Production Scheduling and Control 

6.5.2 Manufacturing Surveillance  
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4.7 Relationship of Manufacturing Management to Systems Engineering 
Manufacturing management is closely linked to the systems engineering process in several 
ways. First, the manufacturing organization should provide representation to the design 
function and ensure producibility and inspectability are addressed as design considerations. 
Manufacturing engineers should provide process capability data to the designers and 
compare proposed tolerances, materials, and assemblies to current capabilities. Typically, a 
representative from the manufacturing function must coordinate on designs, indicating the 
design properly takes these considerations into account. 

4.7.1 Address manufacturing during Design Reviews. Manufacturing is 
also a key topic to be addressed during the Systems Engineering Technical Reviews. 
Specifically, manufacturing readiness should be assessed and reported during Preliminary 
and Critical Design Reviews, with a focus on producibility and manufacturing risks. Of 
course, manufacturing readiness is the primary focus of Production Readiness Reviews. 
Further guidance on each of these reviews is included in IEEE 15288.2. 

4.7.2 Include manufacturing management in the planning process. 
Manufacturing management should participate in the systems engineering planning 
process and contribute to systems engineering planning documents. The Systems 
Engineering Plan should include a discussion of manufacturing risks, staffing, metrics, and 
tools. It should also include an explanation of how manufacturing will be considered 
during the design and in technical reviews and audits. The Integrated Master Plan should 
include significant manufacturing events and reviews. 

4.7.3 Track and manage manufacturing risks. Finally, the program’s risk 
management process should include manufacturing risks, such as those identified through 
MRL assessments. Manufacturing risks should be tracked and managed using the same 
process as all other program risks. 

5. ACQUISITION STRATEGY 

5.1 Financial considerations. Two financial issues are associated with 
implementation of the approaches recommended in this guide. The first is a change in 
development of funding profiles to support doing the right task at the right time. This funding 
profile should include additional contractor costs and additional in-house government costs 
for increased government oversight and subject matter expertise. The second is recognizing 
the favorable impact that well-timed applications of these techniques will have on reducing 
the costs of design iterations in the later stages of development and ultimately reducing unit 
production cost. These considerations are reflected in different ways in each phase of a 
program, as described below. 

5.1.1 Funding requirements for development and production. One of the 
most important business issues related to the implementation of SAE AS6500 and the 
guidance of this handbook is how to properly fund programs using these requirements. 
Implementing SAE AS6500 and MIL-HDBK-896A practices produces different funding 
profiles than those experienced on past programs, as illustrated on FIGURE 1. 
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5.1.2 Program funding comparison. In comparison to historic programs, 
programs that incorporate SAE AS6500 and the principles in this handbook require earlier 
funding, but the benefits of this earlier investment greatly reduce life cycle costs, including 
non-recurring production costs, through the substantial elimination of errors and change 
orders later in the program. SAE AS6500 requires manufacturing processes to be proven 
prior to the start of production and that there be early involvement of the manufacturing 
engineering discipline in the design process. As a result, inefficiencies in the manufacture 
of initial production units promise to be fewer and the producibility of the initial design 
will be improved over that of historical programs. These improvements more than offset 
early development costs. 

 
FIGURE 1. Comparison of MIL-HDBK-896A and traditional program funding profiles. 

5.1.3 Cost estimating considerations. 

5.1.3.1 Development phase. Cost estimating considerations for the 
development phase must now consider the effects of the additional SAE AS6500 and 
MIL-HDBK-896A activity. The standard and handbook promote several acquisition 
approaches that require greater effort up-front, such as producibility studies, assessments 
of manufacturing risks, earlier manufacturing process maturation, and modeling and 
simulation. Engineering and tooling hours shift to an earlier point in the program as design 
and manufacturing efforts are integrated sooner. The benefit, however, is that design 
changes can often be reduced by 50% or more. One program estimated 
MIL-HDBK-896A-related practices would have reduced tooling costs by 40%. 

5.1.3.2 Production phase. Production phase costs and cost estimating will also 
be affected by SAE AS6500 and MIL-HDBK-896A initiatives. Early investments in 
manufacturing development will produce significant cost savings in production. Specific 
areas of increased production efficiency that can be expected from the use of SAE AS6500 
and this handbook’s practices include: 
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a. system redesigns significantly reduced. Traditionally, systems and processes 
have been designed in the development phase with changes made late in development 
through early production. This redesign and tooling rework effort should be significantly 
reduced. 

b. design, quality, and manufacturing processes better integrated, resulting in a 
reduction of scrap, rework, and repair. 

c. major subcontractors involved early in the design process, resulting in a more 
efficient integration of their components into the system and fewer supplier engineering 
change requests. 

d. manufacturing labor costs start lower for first unit or T1 and proceed down a 
cost improvement curve that is below the historic non-MIL-HDBK-896A curve, as shown 
on FIGURE 2. 

e. Better integration of the design, quality, and manufacturing processes result in 
lower first unit cost. 

5.1.3.3 First unit costs run high. Traditionally, first unit costs run high due to 
the significant amount of manufacturing and re-manufacturing needed to incorporate 
design changes. The use of modelling and simulation tools, prior to the fabrication and 
assembly of hardware, enable the identification and resolution of problems prior to the 
actual start of manufacturing.  

 

FIGURE 2. Product/process improvement in a virtual/physical factory environment. 

5.2 Contracting considerations and request for proposal and  
Statement of Work (SOW) inputs. To ensure the implementation of SAE AS6500, the 
customer (such as a DoD program office or prime contractor) must cite it as a contractual 
requirement. Although some companies may implement it on their own, a recent Independent 
Review Team (IRT) discovered that contracts often lack contractual manufacturing 
management requirements, and, therefore, many best practices are not implemented. 
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SAE AS6500 was specifically written to be imposed contractually through an SOW 
requirement. This handbook serves only as a guide and should not be included in SOW 
requirements except to provide additional, non-binding guidance. A suggested SOW input is: 
Example: “The contractor’s Manufacturing Management Program shall meet the 

requirements of SAE AS6500.” 

5.2.1 Competitive purchases: The program office may determine that an 
offeror’s manufacturing management system may be a discriminating factor in the award 
of the contract. In that case, Section L of the RFP may include the following to instruct the 
offerors to describe their manufacturing management system: 

Example: “The offeror shall describe how their manufacturing management system 
meets the requirements of SAE AS6500.” 

5.2.2 Onsite survey inclusion. Since an onsite survey is a proven best 
practice during source selection, some programs may elect to add the following to Section 
L of the RFP: 

Example: “The Government reserves the right to conduct an onsite survey to assess 
the offeror’s manufacturing management system.” 

5.2.3 Proposal evaluation disclosure: Section M of the RFP should include 
the following statement to explain how the offerors’ proposals will be evaluated: 

Example: “This subfactor is met when the offeror’s proposal describes how their 
manufacturing management system meets the requirements of 
SAE AS6500.” 

5.3 Tailoring guidance for contractual application. SAE AS6500 requirements can 
be applied as either full conformance or tailored conformance. Full conformance means that 
all of the requirements of the standard have been, or are being satisfied. Tailored compliance 
means that some of the requirements have been modified using a process agreed to by both 
the customer and the supplier. The contractor should be able to readily demonstrate 
compliance to either full or tailored requirements. Compliance can be demonstrated in two 
ways: 

1. SAE AS6500 requires the manufacturing management system to be 
documented and the documentation describes processes for each of the requirements of the 
standard. Organizations that provide oversight can review the documented policies and 
procedures to ensure each requirement is adequately addressed. 

2. The contractor should be able to provide examples of the analyses, work 
instructions, process control plans, and metrics that are required by the standard. The 
oversight organization can examine these products to determine if the processes and 
procedures are actually being implemented in accordance with the standard. 

5.3.1 General tailoring guidance. Consider the following items when 
applying SAE AS6500 contractually. 

a. The program’s Acquisition Strategy Plan: Determine how SAE AS6500 relates 
to the overall program strategy and requirements. 
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b. The expected scale of program: Make sure SAE AS6500 requirements are 
appropriate to the size and scope of the program. 

c. Documents referenced in SAE AS6500: If the program requires contractor 
compliance with any of the documents referenced in SAE AS6500, those documents must 
be called out separately in the contract. 

d. The degree of Commercial Off-The-Shelf (COTS): Determine the extent to 
which COTS products will be used and how it impacts manufacturing requirements and 
planning. 

e. Software: For programs that are primarily software in nature, SAE AS6500 
may not be applicable. 

f. TABLE II provides guidance for tailoring requirements of the standard. Each 
program leader determines specific requirements that apply to their specific situation. 
Examples of typical situations include:  

1. Material Solution Analysis (MSA) phase 

2. Technology Maturation and Risk Reduction (TMRR) phase 

3. Engineering and Manufacturing Development (EMD) phase 

4. production phase 

5. sustainment phase (including supply support, spares, and repairs) 

6. commercial derivative development (a commercially produced item 
modified for military use) 

7. build-to-print production 

TABLE II. Suggested application of requirements for typical situations. 

Requirement MSA TMRR EMD Production Sustainment Commercial 
Derivative Built to Print 

6.2 Design Analysis for 
Manufacturing 

Y Y Y Y As needed Y Y 

6.2.1 Producibility Analysis Y Y Y Y As needed Y N 

6.2.2 Key Characteristics N Y Y Y As needed Y As needed 

6.2.3 Process FMEA N N Y As needed, to 
evaluate major 
design and 
process 
changes 

As needed Y Y 

6.3 Manufacturing Risk 
Identification 

Y Y Y Y Y Y Y 

6.3.1 Feasibility 
Assessments 

Y Y N N As needed As needed N 
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TABLE II. Suggested application of requirements for typical situations - Continued. 

Requirement MSA TMRR EMD Production Sustainment Commercial 
Derivative Built to Print 

6.3.2 MRL Assessments Y Y Y Y Y Y Y 

6.3.3 PRRs N N Y Y N As needed As needed 

6.4 Manufacturing 
Planning 

N N Y Y Y Y Y 

6.4.1 Supply Chain and 
Material Management 

Y Y Y Y As needed Y As needed 

6.4.2 Mfg Technology 
Development 

Y Y As 
needed 

As needed As needed As needed N 

6.4.3 Cost Y Y Y As needed As needed Y As needed 

6.4.4 Manufacturing 
Modeling & Simulation 

Y Y Y As needed, to 
evaluate major 
design and 
process 
changes 

N Y N 

6.4.5 Manufacturing System 
Verification 

N N Y As needed, to 
evaluate major 
design and 
process 
changes 

Y N Y 

6.4.6 Manufacturing 
Workforce 

N N Y Y Y Y Y 

6.4.7 Tooling/Test 
Equipment/Facilities 

Y Y Y Y Y Y Y 

6.5.1 Production 
Scheduling and Control 

Y Y Y Y Y Y Y 

6.5.2 Manufacturing 
Surveillance 

Y Y Y Y Y Y Y 

6.5.3 Continuous 
Improvement 

N N Y Y Y Y Y 

6.5.4 Process Control Plans N N Y Y Y Y Y 

6.5.5 Process Capabilities N N Y Y Y Y Y 

6.5.6 Production Process 
Verification 

N N Y Y As needed As needed As needed 

6.5.7 First Article 
Inspections 

N N Y Y As needed As needed As needed 

6.5.8 Supplier Management Y Y Y Y Y Y Y 

6.5.9 Supplier Quality N N Y Y Y Y Y 
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5.3.2 Adapting SAE AS6500 to Maintenance, Repair, Overhaul (MRO) 
and Depot Activities. MRO operations are, essentially, manufacturing processes and share 
many of the same attributes as an OEM production line. MRO and depot functions include 
the induction of the unit to be repaired or overhauled, an evaluation of the unit to 
determine if there are problems that need to be addressed other than the planned work, 
some amount of disassembly, some re-manufacturing or refurbishment, re-assembly, test, 
and acceptance. 

5.3.2.1 MRO lines benefit from SAE AS6500 planning tasks. Because of 
these similarities, MRO lines could benefit from many of the SAE AS6500 planning tasks, 
such as modeling and simulation, manufacturing system verification, and planning for 
tooling and test equipment. MRO operations, much like original production lines, require 
the application of SAE AS6500 manufacturing operations management activities, such as 
production scheduling and control, surveillance, continuous improvement, process controls 
and process verifications. 

NOTE: Some differences between depots and OEM production are driven by the 
lack of new design activity during the Sustainment phase. As a result, the 
requirements within SAE AS6500 related to design analysis for 
manufacturing may not be applicable. 

5.3.2.2 Supplier management at MRO and depot facility complications. 
Supplier management at MRO and depot facilities may be more complicated than what is 
typically experienced under an original production contract with a prime contractor 
responsible for both supplier management and final assembly. Depots may rely on supplier 
parts from a combination of prime contractors, lower tier suppliers, direct contracts with 
vendors, and parts purchased from separate supply chain management organizations. 
Application of SAE AS6500 supplier management requirements to each of these may be 
difficult and will depend on the contractual relationship with each of the organizations 
responsible for purchasing parts. 

5.3.2.3 Addressing supplier management complications. If the MRO or 
depot function is being performed by a contractor, then SAE AS6500 can be placed on 
contract with the prime. It should be tailored appropriately, most likely by eliminating the 
Design Analysis requirements. For organic depots that are not governed by a contract or 
SOW, it is up to the program office or operational customer to require SAE AS6500 
practices through whatever vehicle is used to task the organic depot. It is also up to depot 
organizations to take it upon themselves to become compliant with applicable 
SAE AS6500 requirements. Much like the initiatives to comply with ISO9001 or 
SAE AS9100, depot leadership should recognize the inherent benefits of applying best 
commercial standards and practices to their organizations to improve performance and 
remain competitive. 

5.3.3 Adapting SAE AS6500 to limited production quantity programs. 
Limited production quantity programs can include space programs (launch vehicles, 
satellites, etc.) large ships and boats (aircraft carriers, submarines, etc.), and specialized 
aircraft (such as Air Force One). The small production numbers raise the frequently asked 
question of how manufacturing management can or should be applied in these situations. 
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5.3.3.1 Do limited production operations really have to be planned to the 
same level of detail as with a typical production program? Just as with the MRO 
operations discussed above, limited production programs can benefit from both the 
planning and operations management requirements of SAE AS6500. In addition, the 
design activities for these programs should consider manufacturing issues as described in 
SAE AS6500. The application of sound supplier management practices is especially 
important, given the critical application environments of the parts and the need to ensure 
quality in products that may not be accessible for repair (such as satellites). SAE AS6500 
requirements cannot be dismissed outright and need to be analyzed, in detail, by subject 
matter experts to determine their proper application to low quantity programs. 

5.3.3.2 Tailoring SAE AS6500 for limited quantity programs. SAE AS6500 
should be tailored to meet the unique circumstances of limited quantity programs. In some 
cases, certain requirements may not be applicable. In other cases, the requirements may be 
applicable, but may need to be applied differently. Examples include: 

a. Producibility analysis may still be applicable, but it should focus more on 
quality and manufacturability and less on the manufacturing cost effectiveness of the 
proposed design. 

b. Modeling and Simulation typically focuses on factory processes, throughput, 
and capacity analysis and may not be required. 

c. Process controls and variability reduction may still be applicable but process 
engineers may need to be more creative in their application. Even though only one end-
item is produced, some processes can be repeated hundreds or thousands of times (such as 
with hole drilling or welding) and continue to lend themselves to statistical process 
controls. 

5.4 Award fee inputs. The government program office may include an award fee as 
an incentive for the effective implementation of SAE AS6500. The following suggestions 
should be considered as starting points in developing award fee criteria. Once these plans 
have developed and are satisfactory, the Award Fee criteria should evolve to include 
evaluation of manufacturing, quality, and supplier management metrics. Examples include 
schedule performance, out-of-station work, scrap/rework/repair, Cost of Quality, process 
capabilities, and supplier delivery performance. Each program should tailor the criteria to fit 
their particular circumstances, priorities, and risks. 

a. a manufacturing plan is available and it includes an approach for identifying 
key characteristics and critical manufacturing processes, and performing variability 
reduction activities and manufacturing capability assessments. The plan describes an 
active, aggressive producibility program. 

b. a quality plan is available and it describes sound plans for implementing an 
effective Quality Management System that focuses on defect prevention. 

c. a subcontract plan is available and it clearly describes implementation of a 
world-class supplier management organization that ensures exceptional supplier 
performance. 
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d. metrics have been established at the prime and with suppliers to accurately 
measure cost, schedule, and quality performance during development and to quickly 
provide supplier performance insight to the government using predictive indicators or 
other similar tools/techniques. 

6. REQUIREMENTS 
This section provides additional background, guidance, and lessons learned on the concepts 
contained in SAE AS6500. The topics are organized to parallel the SAE AS6500 structure. 

6.1 Manufacturing management system. SAE AS6500 requirements stipulate 
contractors should have an overall manufacturing management system that documents 
organizational responsibilities for each requirement in the standard. Refer to Section 6.4, 
Manufacturing planning for additional information on documented manufacturing plans. 

6.2 Design analysis for manufacturing. 

6.2.1 Producibility analysis. Producibility should be considered as a part of 
design trade studies. The role of design trade studies in the manufacturing development 
process is to achieve a product design that effectively balances the system design with 
cost, schedule and performance elements to minimize total program risk. Institutionalizing 
producibility as part of the design trade study process is essential to an overall goal of 
affordable weapon system acquisition. Another excellent source for information on 
producibility programs is the Navy’s NAVSO P-3687, “Producibility System Guidelines.” 
This guide recommends a 5-step process: 

1. establish a producibility infrastructure, 

2. determine process capabilities, 

3. address producibility during conceptual design, 

4. address producibility during detailed design, and 

5. measure producibility. 

6.2.1.1 Identify production processes and economic impacts. The design 
trade study process should identify alternative production processes and consider the 
economic impacts of each alternative. Tools such as Taguchi Loss Function, Design of 
Experiments (DOE) or Quality Function Deployment (QFD) methods are valuable in 
evaluating the viability of design alternatives. The design trades should strive for robust 
product designs tolerant to variation in the intended manufacturing, assembly, test, and 
usage environments. They should be capable of identifying the design that represents 
minimum life cycle cost within program constraints. When key suppliers act as full 
members of the design team, the functional allocation and integration of all system 
components is enhanced. 

6.2.1.2 Use trade studies to assess producibility. Trade studies should be 
conducted to assess the producibility of as many design concepts as time and cost allows, 
with level of detail and accuracy dependent on the relative contribution of each concept to 
achieving the production cost target or requirement. The introduction of new technology 
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can also introduce new design challenges. Utilizing concepts unproven in a production 
environment may result in severe cost and schedule problems. Environmental limitations 
must be addressed when analyzing alternatives. The benefits of utilizing commercial parts 
and processes and the affordability penalties resulting from the use of non-standard parts 
and processes should also be evaluated and documented in design trade-off decisions. 

6.2.1.3 The cost of ignoring producibility issues. Programs that have not 
addressed producibility issues early in the product design and development cycle have 
experienced significant life-cycle cost increases due to lack of performance, excessive 
rework and repair, as well as costly redesign actions. The likelihood of a smooth transition 
from development to production is significantly enhanced by thorough monitoring and 
continuous application of the producibility initiatives. 

6.2.1.4 Process capabilities. The manufacturing organization should 
communicate process capabilities to the design engineers so that tolerances can be 
determined based on the ability of the manufacturing processes to meet them. The 
manufacturing capabilities should be fed back into the design to result in a more 
producible product, consistent with the inherent capabilities of the existing processes. 

6.2.1.5 Determinant Assembly is a producibility approach used to 
significantly reduce tooling and assembly costs. It relies on self-locating parts that have 
locating features directly on each mating part, as opposed to relying on expensive tools and 
fixtures for part placement. By applying this technique to position longerons to skins and 
bulkheads, a recent Air Force program was able to reduce aircraft assembly time by 
1,200 hours per shipset in just one area. 

6.2.1.6 Determine producibility effort targets. To determine where to target 
producibility efforts, assemblies can be evaluated using some or all of the following 
characteristics: 

a. assemblies with high Realization Factor (RF) 

b. assemblies which are time-consuming or difficult to assemble 

c. assemblies consisting of many parts 

d. assemblies consisting of expensive or difficult to manufacture parts 

e. assemblies or parts which have experienced excessive failures in the field 
which could possibly be improved by a more robust design 

f. areas having a high cost of quality 

g. assemblies with a large number of shims 

NOTE: Parts designed for use with Determinant Assemblies and monolithic parts 
that incorporate previous multiple individual parts can be a tremendous 
benefit to the assembly process. However, those unique parts may be 
difficult to support later in the life of the system. Designers must try to 
attain the optimum balance between standard and unique parts. 
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6.2.1.7 Successes. Successful implementation of producibility initiatives for the 
cargo floor of a recent aircraft program replaced 22 extrusions with 8 machined parts, 
resulting in installation of 4,000 fewer fasteners and a net program savings of $8.7 million 
in material, detail parts, and assembly cost over the life of the program.  

6.2.1.8 Lessons Learned. The use of producibility and affordability 
engineering practices are most effective when they flow down to major/critical suppliers. 
Under performance-based specifications, the government relinquishes control of the 
detailed design to the prime contractor and suppliers, so those suppliers with design 
authority must also employ these tools and techniques. 

6.2.1.9 Producibility Improvement Programs (PIP). PIPs should be formally 
documented and the documentation must include the baseline (before implementation) 
costs and post implementation costs, as well as the non-recurring costs to implement the 
initiative. It is often difficult to distinguish initiatives that are “over and above” the 
historical learning curves that were already used to estimate the program costs. Historical 
learning curves usually include some amount of cost reduction initiatives, so the challenge 
in documenting and estimating the impacts of new projects is to determine if they are truly 
over and above what has been done in the past. Generally, initiatives that reduce the scope 
of work can be considered over and above, but the ones that improve the efficiency of the 
work must be more carefully evaluated.  

6.2.1.10 Cost plus fixed fee on producibility efforts. One major DoD program 
found that producibility efforts should not be placed on a contract using a Firm Fixed Price 
option. Although an acceptable level of effort for producibility activities was negotiated, 
once on contract, higher priority work at the prime contractor prevented the agreed-to level 
of effort from being accomplished. Since no specific results or products were required in 
the contract, there were no penalties for not putting forth the effort. As a result, the 
contractor achieved a high profit rate and the affordability and producibility of the product 
was not improved significantly. Instead of a Firm Fixed Price contract, a Cost Plus Fixed 
Fee contract is recommended. 

6.2.1.11 Remain open to additional cost saving ideas. A program found return 
multiples (also known as Return on Investment) may approach 15 or 20 to 1, for initiatives 
implemented early in a program. As the program progresses through production, the return 
multiple is typically expected to decrease, primarily due to the reduced number of units 
that experience the benefits. However, a program found the benefits do not decrease 
because the easy, “low hanging fruit” is exhausted early (as many would expect). Rather 
they continued to find ideas that resulted in large payoffs. Therefore, the program should 
continue to search for new projects even after the initial round of projects has been 
identified and implemented. 

6.2.1.12 Consider producibility early in the design process. Historically, 
efforts have relied on serial development between product and process. Almost all 
development emphasis was placed on system performance during pre-production. When 
the required performance was functionally demonstrated, attempts were made to transition 
the design to production. The manufacturing function tried to adapt existing processes to 
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manufacture the qualified design. Considering producibility earlier in the design process 
promises a smoother transition to production. 

6.2.2 Key Characteristics (KCs) and processes. FIGURE 3 provides the 
definition of a KC. The identification of key product characteristics and key production 
process capabilities is a basic engineering task essential to successful manufacturing 
development. The objectives of this practice are:  

a. identify product characteristics of the design which most influence fit, 
performance or reliability;  

b. support the mapping of product characteristics to production processes; 

c. enable the balancing of product design requirements with manufacturing 
process capabilities; and 

d. enable the development of the required process controls for production. 

 
FIGURE 3. Key Characteristic (KC) definition. 

6.2.2.1 Key Characteristics Function. The concept of identifying key 
characteristics is linked to the Pareto principle, which asserts that a relatively small 
number of features will have the most significant impact on performance. This principle 
enables the program to focus scarce resources on the most critical features and processes. 
Identification of KCs should ideally begin in the earliest phases of development, with the 
list of KCs continuing to be refined. Early in development, a list of preliminary KCs 
should be identified. As the development phase progresses, the list should mature to a final 
list of KCs. As the KCs are finalized, the corresponding list of critical processes should 
also be completed. Later in development the list of KCs should be reduced as the product 
design is refined to make key characteristics less sensitive to variation. The practice of 
identifying KCs serves many purposes. Among them: 

a. Facilitating communication among design and manufacturing engineers by 
linking the competing objectives of performance and producibility together in a common 
point of reference on the part or system. Many KCs are interface characteristics, so their 
identification requires enhanced communication between engineering and manufacturing 
as well as among prime contractors and suppliers. 

b. Identifying characteristics to be redesigned or eliminated in order to achieve a 
more robust product design. 

c. Identifying characteristics for which manufacturing process capabilities must 
be assessed. 

d. Identifying candidate key characteristics for future variability reduction 
activities. 
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e. Identifying product characteristics that are most important and may require 
extra attention in the manufacturing process, such as the use of statistical process control 
techniques. 

f. Assist in selection of suppliers that already have process control in place for the 
processes that are high contributors to product variation. 

6.2.2.2 Identification of KCs: Contractors have used a wide variety of 
approaches for identifying KCs. Subjective approaches, such as general discussions and 
consensus among design and manufacturing experts may be used. More objective and 
rigorous tools are recommended, including Quality Function Deployment, detailed risk 
identification methods, or statistical analysis of yield and reliability data from similar 
products. 

NOTE: Key Characteristics should be used to control the quality of parts  
designated as Critical Safety Items (CSIs) or Critical Application Items 
(CAIs). 

6.2.2.3 KCs and critical characteristics comparison. It is important to 
distinguish between Key Characteristics and Critical Characteristics. As defined in 
DOD-STD-2101 (Classification of Characteristics), a Critical Characteristic is one that 
“analysis indicates is likely, if defective, to create or increase a hazard to human safety, or 
to result in failure of a weapon system or major system to perform a required mission.” A 
Critical Safety Item is a part that contains a characteristic for which any failure or 
malfunction could cause a catastrophic or critical failure resulting in the loss or serious 
damage to the aircraft or weapons system, an unacceptable risk of personal injury or loss 
of life. Per the Aviation Critical Safety Item Management Handbook, Critical 
Characteristics identified on CSIs must undergo 100% inspection, unless the government 
has approved a sampling or Statistical Process Control approach. In addition to aviation 
CSIs, NAVSEA Instruction 9078.1 defines CSIs for naval ships as any ship part, assembly, 
or support equipment containing a critical characteristic whose failure, malfunction, or 
absence may cause a catastrophic or critical failure resulting in loss or serious damage to 
the ship, or unacceptable risk of personal injury or loss of life. The NAVSEA instruction 
also requires stringent quality controls on CSIs. 

6.2.2.4 Critical Characteristics (designated as Key Characteristics). This 
may be done to trigger the quality system to develop a process control plan and to institute 
variability reduction efforts. In some companies, the KC management process may be 
better defined and more visible than the process to manage Critical Characteristics. 
Identifying Critical Characteristics as KCs may also facilitate and improve communication 
with suppliers. Since the flow down of KCs may be a well-understood process, it could be 
an ideal method to ensure a supplier understands the criticality of characteristics flowed 
down to them for fabrication or assembly. 

6.2.2.5 Lifespan of a KC. By definition, there should be relatively few KCs. 
Although there is no magic number that is universally applicable, each major part may 
have 1-3 KCs, and most simple parts (such as clips and brackets) should have none 
(although even simple parts may have KCs). Once identified, KC status is not permanent. 
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KCs are changeable over time and may be deleted as the design is changed. New KCs may 
also be added as the design is refined.  

6.2.2.6 KC assessment. If KCs are identified for assembly characteristics (such 
as fit, gaps, etc.), then the design for the parts composing the assembly must be assessed to 
determine if KCs exist for each of those parts. Through this approach, higher level KCs 
may be flowed down to the lowest possible level to ensure controls in fabrication. A 
common question that arises is, “Should KCs be deleted when the manufacturing process 
is highly capable?” By definition, the stability, capability, or maturity of a process is not a 
factor in the designation of a feature as a KC. KCs can serve as an important 
communication tool to other producers of key features. For instance, a part may be re-
competed and made by a new supplier or turned over to a depot for sustainment support. In 
these examples, the continued designation as a KC communicates the criticality of the 
feature to the new supplier. If current processes are highly capable, the process control 
plan should be adjusted to reduce inspections. In addition, use of highly capable processes 
may reduce the amount of attention and documentation required. Another frequently asked 
question is whether KCs need to be identified on programs with very low production 
quantities. KCs should be identified regardless of the anticipated quantities. The definition 
of KC is independent of quantity. If a characteristic is important, that criteria needs to be 
communicated to the manufacturing and quality organizations so they are aware and treat 
the characteristic with due care. Process control plans must still be developed to ensure the 
quality of the KCs. Those process control plans may rely less on statistical process control 
methods, given the low numbers, but added attention needs to be given to characteristics 
that are key to the proper function of the system. Even if the overall production quantities 
are low, some critical processes related to KCs may be repeated hundreds or thousands of 
times (such as hole drilling). 

6.2.2.7 KC identification. KCs should be identified on drawings or in 
specifications. One method is to use a flag, as shown on FIGURE 4 which shows KCs 
relating to low observability properties. A unique identifying number or label should be 
assigned to each KC so that related data can be tracked and mapped to the production 
processes that create the KCs. 

 
FIGURE 4. KC Flags on drawing. 
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6.2.2.8 Mapping critical processes to KCs: Once identified, the team must 
determine which manufacturing processes create or significantly contribute to each KC. 
These processes are then termed critical processes. The contractor should maintain 
documentation depicting this relationship between each KC and their associated critical 
processes. For each critical manufacturing process, a Process Failure Modes and Effects 
Analysis (FMEA) should be performed and process control plans should be developed and 
implemented.  

6.2.2.9 Identify key process characteristics. For each critical process, the key 
process parameters (also known as key process characteristics) must be identified. Key 
process parameters are process inputs (such as temperature, time, pressure, etc.) that have a 
significant impact on the product being produced in that process and must, therefore, be 
strictly controlled. In some cases, the prime contractor may flow down specific key 
characteristics to a supplier, especially if the supplier is producing to a design provided by 
the prime. Suppliers who have design authority, however, should have responsibility to 
identify their KCs and critical processes. In either case, the prime should have a plan for 
managing production of products with key characteristics at suppliers. 

6.2.2.10 KCs on avionics. The question frequently arises as to whether or not 
Key Characteristics can be applied to avionics items. When it comes to KCs on avionics, 
there are two general approaches. The first is to identify KCs on mechanical aspects of the 
parts (solder characteristics, part dimensions, etc.) that would impact either the integrity of 
the part or its physical integration into the next higher assembly. The second approach is to 
identify electrical performance parameters as KCs. These may include voltage ranges, 
activation times, frequency responses, etc. Both of these approaches are valid and have 
been used. 

6.2.2.11 Additional guidance. Additional guidance on Key Characteristics can 
be found in SAE’s aerospace standard SAE AS9103, “Variation Management of Key 
Characteristics.” This handbook and SAE AS6500 are intended to be consistent with 
SAE AS9103. SAE AS9103 may be included in the SOW alongside SAE AS6500 to 
provide additional requirements for KCs and Variation Management. 

6.2.2.12 Lessons learned. The benefits gained from improved communication 
and coordination between various organizations, as a result of identifying KCs, cannot be 
overstated. Including cross-functional (and often cross-company) representatives at the 
same table to determine critical interfaces and features can result in huge dividends. In a 
major airframe program, this type of coordination resulted in major structural sections 
fitting “like a glove,” despite being designed and built by different companies, which were 
geographically separated, and used different materials and processes. The identification of 
too many KCs can be a potential pitfall. Each KC costs the manufacturing organization 
money. They must develop control plans and collect, analyze, and act upon data. Too 
many KCs can be caused by: 

a. misunderstanding of the definition of KCs,  

b. overly-cautious product design engineers who see KCs as an opportunity to 
tighten the reins on manufacturing, and  
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c. the desire for manufacturing data. 

6.2.2.13 KC considerations. In one large aircraft program, engineers chose 
weight as a KC, not because it met the definition of a KC, but because they wanted a great 
deal of weight-related manufacturing data. Training of all IPT members is the key for 
preventing too many KCs from being chosen. Metrics can be an area of conflict when it 
comes to measuring progress in selecting KCs. While tracking the total number of KCs 
identified to-date is informative, managers must use the data judicially, since there are 
generally no “good” or “bad” trends or criteria and numerical goals are meaningless. 
Typically, early in a program, the number of KCs should be expected to rise as new KCs 
are identified; later in development they should be slightly reduced as some are designed 
away. However, those who compile data for the metric can be inundated with requests to 
needlessly explain every change from reporting period to reporting period. The ultimate 
goal is that each KC should have proven acceptable capability. A recent IRT discovered 
that design documentation does not consistently identify safety-critical features. As a 
result, no special emphasis is communicated to manufacturing, quality, or purchasing 
organizations, or through the supply chain. To help correct this situation, key 
characteristics should be identified on items that are critical to safety. KCs can serve as an 
excellent communication tool among organizations and suppliers to indicate the criticality 
of those items. They will also help control the quality of safety-critical items by ensuring 
they meet design requirements. 

6.2.3 Process Failure Modes and Effects Analysis (PFMEA). Process 
Failure Modes and Effects Analyses (PFMEA) provide a structured risk based 
methodology for analyzing and preventing failures in manufacturing and assembly 
processes. The PFMEA is a process design risk analysis tool, and it should be performed 
continuously from conceptual design through development. The objectives of PFMEAs 
are: 

a. identify the potential failure modes of a process and the effects of those 
failures;  

b. rank risk probability and consequence associated with failure modes; and  

c. develop actions that will mitigate or eliminate the probability and/or 
consequence of the potential failures. 

6.2.3.1 Early recognition. Timeliness of the analysis is important because it 
can be used to identify and eliminate failure modes before they are incorporated into a new 
production process. Alterations to the manufacturing process or improvements to the 
product design based on PFMEA in the development phase are more easily implemented at 
a lower cost. Whenever a design or process change is implemented, the analysis should be 
renewed and the worksheets that document the analysis should be updated. 

6.2.3.2 PFMEA benefits. Conducting a PFMEA during process development 
permits early problem identification and resolution. This technique focuses on the 
prevention of non-conformance rather than detection. A thorough application of the 
PFMEA can identify foreseeable modes of failure within a process design, especially 
catastrophic or safety related failures. The shortcomings of the manufacturing process can 
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then be resolved during manufacturing process design. Failure modes that cannot be 
entirely resolved can be recognized and mitigated. In many cases, recognition of the risk of 
failure during manufacturing can also be fed back into product design, and a more robust 
product design that is less sensitive to certain manufacturing processes can mitigate risk. 
By reducing failure points and thereby increasing process quality, we should be able to 
reduce production, operational and maintenance costs. PFMEAs are especially valuable to 
analyze critical manufacturing processes where the PFMEA prevents defects that are most 
relevant to safety and mission performance of the part or system. They can also be used to 
reduce cost on high dollar value parts and parts with manufacturing processes that have a 
high scrap and/or rework cost. DoD, prime contractors, and suppliers should realize the 
following benefits: 

a. increased quality because of a more thoroughly engineered manufacturing 
process. 

b. cost savings by reduction of rework 

c. cost reduction by identification of potential errors earlier in the life of the 
system. 

d. better understanding of the effects of potential failures on the customer 

e. upgraded production performance from process improvement efforts based on a 
prioritized list of potential failure modes 

f. improved Customer Satisfaction due to development of products with greater 
quality and reliability 

6.2.3.3 Guidance. Initiate PFMEA analysis as soon as product design has 
progressed far enough to initiate manufacturing process development. PFMEAs should be 
repeated/updated whenever there is a new process, a modification to an existing process, or 
when an existing process will be used in a new environment, location or application. The 
level of effort, sophistication and scope of the PFMEA should be thoughtfully tailored to 
each application. An Ishikawa diagram (also called a fishbone diagram) may be useful for 
some steps in the PFMEA. Development and maintenance of PFMEA process worksheets 
is important to ensure continuity for follow-up analysis. 

6.2.3.4 Design Failure Modes and Effects Analyses (DFMEA). DFMEA is a 
design analysis technique used to identify potential problems with the product design and 
to eliminate or mitigate those problems before the design is finalized. PFMEAs are not 
intended to take the place of DFMEAs, since they cannot improve the quality or reliability 
of an inherently poor design. Manufacturing and Quality Engineers should contribute to 
DFMEAs early in development. Outputs from the DFMEA should feed into the PFMEA to 
provide the most robust transition to production. 

6.2.3.5 Failure Modes, Effects and Criticality Analysis (FMECA). Some 
literature on FMEAs includes a criticality analysis of each of the items and failure modes 
being analyzed to determine which are most important. If this analysis is conducted, the 
term becomes Failure Modes, Effects and Criticality Analysis (FMECA). However, when 
developing SAE AS6500, the SAE committee decided against the mandatory imposition of 
the criticality analyses due to added costs to perform the analyses. Therefore, SAE AS6500 
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uses the PFMEA terminology. A worksheet is useful for tracking the PFMEA process. 
Worksheets should document the ten steps described below: 

1. Process Function. This is a concise statement of the function of the 
manufacturing process (examples include; polishing, deburring, drilling or assembling). 
Supporting information should be included to put the process function into context. 
Indicate the purpose of the process and include metrics for performance. 

2. Potential Failure Mode. A potential failure mode is a way in which the 
process or part can fail to meet specifications, or otherwise dissatisfy the customer. 
Describe the potential failure as a physical nonconformance of the process output 
(examples include; bent, cracked, handling damage, hole off-location). All predictable 
failure modes for each component, sub-system and process characteristic should be 
identified and described. 

3. Failure Effects. Failure effects are the consequences to the customers for each 
potential failure mode. The failure under consideration may affect multiple levels of the 
system. Because of this, local, next higher level, and end effects should be evaluated. For 
each level of the system, also consider each customer. The local effect is typically the 
failure mode itself, but may also be stated in terms of effects on the local process (cannot 
assemble, damages equipment, causes excessive tool wear, endangers operator). For 
downstream manufacturing operations, failure effects should be stated in terms of process 
performance. End effects are those seen by the user, and the effect a failure mode has on 
the operation, function or status of the global manufacturing process. These effects should 
be stated in terms of product or system performance (examples include; noise, intermittent 
operation, rework/repairs, poor appearance). 

4. Severity. Severity is a subjective numerical rank given to each failure effect. It 
considers the worst potential consequence of a failure, determined by degree of injury, 
interruption to the process, or damage to the system. The PFMEA team should agree on 
ranking criteria appropriate to the analysis. The ranking criteria should create categories of 
failure effects (examples include; minor, marginal, critical and catastrophic). The 
categories are then numbered and a numerical rank assigned to each failure effect. 

5. Causes. This is a description of the potential causes of a failure mode, written 
in terms of something that can be controlled or prevented (examples include; Inaccurate 
gauging, worn locator, improper heat treating, inadequate lubrication). Avoid ambiguous 
naming of causes (examples include; operator error, machine malfunction). Causes will 
often be interrelated and a design of experiments or similar method may be necessary to 
discover major causes that can be controlled. 

6. Occurrence. Occurrence is the probability that a specific failure mode will 
happen. Occurrence is numerically ranked in the same manner as severity. Historical 
failure rate data should be used if it is available. Statistical data from similar processes can 
be used as a basis for determining occurrence. Otherwise, the team may perform a 
subjective assessment. 

7. Current Process Controls. This is a description of the existing controls that 
either prevent or detect potential failure modes. Prevention controls are preferred and may 
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include methods such as statistical process control (SPC) or error proofing. Detection 
controls may include gauging, manual inspection or inability to pass a bad part. 

8. Detection. Detection is the probability that a failure will not be detected. 
Detection is numerically ranked in the same manner as severity and occurrence. The 
probability of non-detection is established in the same manner as occurrence. 

9. Risk Priority Number. Risk priority number (RPN) represents failure mode 
criticality. This is a simplified but effective version of criticality analysis. The RPN is the 
product of severity (S), occurrence (O), and detection (D): 

RPN = S × O × D 

NOTE: The potential failure modes with the highest RPNs are the most critical, 
and deserve the most attention. Items with very low RPNs may not 
warrant action. 

10. Recommended Actions. Actions should be developed with the purpose of 
lowering the RPNs. Once the highest RPNs are addressed, the team can continue to 
address the next highest risk areas. The actions should endeavor to reduce rankings in the 
following preference order: severity, occurrence, and detection. Emphasis is placed on 
preventing failures rather than detecting them. 

6.2.3.6 External guidance. Military standard methods for conducting a Failure 
Modes, Effects, and Criticality Analysis (FMECA) were detailed in MIL-STD-1629A. 
This MIL-STD was cancelled on August 4, 1998. The cancelled standard gave guidance to 
consult various national and international documents for information regarding failure 
mode, effects, and criticality analysis. The standard was written for product (design) 
FMECA, and no guidance was provided for applying the FMECA to manufacturing or 
assembly processes. An industry standard method for conducting a Potential Failure 
Modes and Effects Analysis in Manufacturing and Assembly Processes (PFMEA) can be 
found in the Society of Automotive Engineers (SAE) surface vehicles recommended 
practice document J1739 (SAE J1739). The PFMEA methodology in SAE J1739 uses a 
different type of criticality analysis than MIL-STD 1629A. The SAE PFMEA 
methodology is well suited to manufacturing processes and is recommended. Another 
source of information is the document “Potential Failure Mode and Effects Analysis” from 
the Automotive Industry Action Group. 

6.2.3.7 Lessons learned. To be effective, the application of PFMEA must 
correspond with the nature of the process itself and ultimately each PFMEA is a uniquely 
performed analysis. Because it contains subjective measurements, it is not appropriate to 
compare the results of different PFMEAs, even those performed by the same individual or 
team. The analysis should be assigned to individuals familiar with the system or similar 
systems. If the PFMEA is treated as a box checking, CDRL-fulfilling exercise it will be of 
little use. Seven common sources of failure in contractor performed PFMEA are identified 
below. Teams assigned to do PFMEAs should take steps to avoid these potential pitfalls: 

1. Untimely undertaking. The PFMEA must be scheduled and completed 
concurrently with the design of the manufacturing and assembly process so that the 
product designs will reflect its analysis, conclusions, and recommendations. 
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2. Insufficient Recognition of Failures and Causes. The discovery of failures 
and their causes is essential to the PFMEA task. Potential failure modes must be explained 
and not simply named. Make sure failure modes are not confused with effects or causes. 
An understanding of the process functional requirements is requisite to understanding 
potential failure modes, effects, and their causes. 

3. Failure to properly identify the customer. The customer will typically be 
identified as the end user, but can include downstream manufacturing or assembly 
operations. 

4. Too narrow in scope of analysis. The contractor should be sure to explore the 
effects of multiple failures, degraded conditions, and downstream effects. After 
establishing potential failure modes for a particular process, consider the effects in relation 
to the entire system and all customers. 

5. Weak recommendations. A common pitfall is a failure to recommend actions 
that resolve the risk, or to develop actions that are neither actionable nor executable. 

6. Improper failure classification. Potential failure modes must be accurately 
classified. Trivializing or hiding potential safety items or failure modes must be avoided. 
Similarly, occurrence and detection must not be treated with too much optimism. 

7. Ignoring existing system data. Failure data and history of very similar 
systems should be considered. 

PFMEAs can be used to identify opportunities to mistake-proof (Poka Yoke) manufacturing 
processes. Foreseeable modes of failure with high risk priority numbers should, as part of 
their recommended actions, include mistake-proofing devices or processes. Several IRTs 
found that mistake-proofing is an underused approach and even a moderate implementation 
of its concepts would have prevented several high-profile weapon system failures. 

6.3 Manufacturing Risk Identification 

6.3.1 Manufacturing Feasibility Assessments. Manufacturing Feasibility 
Assessments are typically performed early in the life cycle when competing design 
concepts are being considered. The assessments are conducted to identify potential 
manufacturing constraints and risks and the capability of the contractor to execute the 
manufacturing efforts. Assessments should be made for each competing design alternative 
under consideration and they should: 

a. Identify required production processes and manufacturing techniques not 
currently available and the risks associated with development of manufacturing 
technologies, the probability of meeting the need dates and possible contingency actions. 

b. Identify potential impact of critical and long lead time material and production 
equipment, the probability of meeting the need dates and possible contingency actions. 

c. Provide production feasibility, design performance, cost, and schedule impact 
analyses to support trade-offs among alternatives. 

d. Provide cost and production schedule estimates to support management 
reviews. 
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e. Determine an efficient rate of production and rate acceleration curve. 

f. Make recommendations for anticipated production testing and demonstration 
efforts, including specific requirements for production run demonstrations using 
production tooling, test equipment, and manufacturing equipment. 

g. Develop methods of conserving critical and strategic materials and of reducing 
reliance on foreign sources. 

h. Identify potential production bottlenecks and limiting factors to rate production. 

6.3.2 Manufacturing Readiness Level (MRL) Assessments. An excellent 
approach to identifying manufacturing risks is the Manufacturing Readiness Level 
Assessments. MRL Assessments were developed by OSD’s Joint Defense Manufacturing 
Technology Panel, and evaluate production maturity using Manufacturing Readiness 
Levels ranging from one to ten. The intent was to create a measurement scale that would 
serve the same purpose for manufacturing readiness as Technology Readiness Levels serve 
for technology readiness – to provide a common metric and vocabulary for assessing and 
discussing manufacturing maturity, risk, and readiness. MRLs were designed with a 
numbering system to be roughly congruent with comparable levels of TRLs for synergy 
and ease of understanding and use. 

6.3.2.1 Assessment of risk. Manufacturing readiness, like technology 
readiness, is critical to the successful introduction of new products and technologies. 
Manufacturing Readiness Levels (MRLs) represent a new and effective tool for the DoD 
S&T and acquisition communities to address that critical need. MRLs are designed to 
assess the maturity and risk of a given technology, weapon system or subsystem from a 
manufacturing perspective and guide risk mitigation efforts. MRLs are also intended to 
provide decision makers at all levels with a common understanding of the relative maturity 
and attendant risks associated with manufacturing technologies, products, and processes 
being considered to meet DoD requirements. They provide specific criteria to support 
decision-making based on knowledge of manufacturing status and risk. 

6.3.2.2 MRL criteria. The criteria for Manufacturing Readiness Levels are 
organized into threads, such as Design, Materials, and Process Capability & Control. Many 
of the MRL criteria are closely tied to SAE AS6500. For example, MRL criteria address 
producibility studies, key characteristics, production cost models, and quality systems. 
Therefore, implementing the practices described in this handbook and SAE AS6500 will 
enable successful achievement of target MRLs. Objective criteria are provided for each 
level to reflect the growing expectation of maturity as the program progresses through its 
life cycle. During the early MRL phases, manufacturing feasibility is the only expectation. 
As a program progresses through development, the MRL criteria become more stringent 
and production representative manufacturing processes are anticipated. At the finish of the 
EMD phase, programs should make use of the same tooling, test equipment, workforce, 
work instructions, and methods that will be used during the Production phase. 

NOTE: An MRL Assessment is a snapshot of manufacturing maturity at a moment 
in time. This practice may also be performed on an ongoing basis, as part 
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of the program’s risk management process. It may also be implemented as 
a special, targeted review of manufacturing capability. 

6.3.2.3 MRL Assessment benefits. In the defense acquisition environment, 
risk has often become an issue when the contractor/government acquisition team 
overestimates technology readiness, downplays potential transition to production 
problems, or fails to plan and perform effective risk management. The results frequently 
have included cost overruns, schedule delays, and technical compromises. MRL 
Assessments have been used successfully to identify and mitigate manufacturing risks. 
One specific success story includes an Air Force bomber modification program. The 
program office personnel, in conjunction with the prime contractor, assessed a dozen key 
suppliers and identified numerous risk areas that required risk mitigation plans. The 
identified risks ranged from product oriented actions (design changes and diminishing 
manufacturing source issues) to factory process improvements (quality and production 
control systems). The program office firmly believed that, had the MRL process not been 
in place, many of these risks would not have surfaced until the program started production, 
resulting in cost and schedule impacts. MRL Assessments can also provide benefits to the 
prime contractors and suppliers. In some instances, where there is limited government 
program office manning, the government engineers and program managers may not be 
aware of issues at lower tier suppliers. In the case of another Air Force bomber 
modification program, the MRL assessment revealed diminishing manufacturing source 
issues at suppliers for which the government had to take action to resolve. The contractors 
were pleased to be able to elevate the issue to the government customer. In another 
example, The MRL assessment for a piece of personal protection equipment identified the 
need for additional manufacturing technology development. This finding led the 
government to allocate additional funding for the contractor to improve manufacturing 
process yields, which improved schedule confidence and reduce cost. Go to 
www.dodmrl.com, for additional information on MRLs and MRL Assessments. 

6.3.3 Production Readiness Reviews (PRRs). The program-level PRR is a 
Systems Engineering Technical Review at the end of EMD that determines if a program is 
ready for production. MRL 8 is the target for Low Rate Initial Production (LRIP) and 
MRL 9 is the target for Full Rate Production (FRP); these targets should be reflected in the 
acquisition program baseline. The PRR assesses whether the prime contractor and major 
subcontractors have completed adequate production planning and confirms that there are 
no unacceptable risks for schedule, performance, cost, or other established criteria. 
Generally, incremental PRRs (iPRRs) are conducted at the prime and major subcontractors 
in the year leading up to the milestone decision, and a formal Executive PRR is conducted 
at the conclusion of the iPRR process. The Executive PRR report includes a 
recommendation to the Milestone Decision Authority regarding the program’s readiness 
for production. The PRR process is an on-site, structured examination of the program’s 
readiness for production, and should include comprehensive evaluations in the following 
areas: Industrial Resources, Production Engineering & Planning, Quality Assurance, 
Material & Purchased Parts (Supply Chain Management), Engineering & Product Design, 
Software, Logistics, and Program Management. An assessment of manufacturing maturity 
and risk, conducted by manufacturing subject matter experts, should be a principal area of 
emphasis during the PRR. That portion of the PRR should review the readiness of the 
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manufacturing processes, the quality management system, and the production planning 
(including facilities, tooling and test equipment capacity, personnel development and 
certification, process documentation, inventory management, supplier management). 

6.3.3.1 When to conduct PRRs. In the case of incremental acquisitions, PRRs 
should be conducted for each major increment. PRRs, or Production Assessment Reviews, 
should also be conducted whenever major changes to the production system warrant 
additional review, even if they occur after the full-rate milestone decision. Examples of 
changes that might trigger a follow-on review are movement of the production facility, 
large-scale tooling changes, major supplier changes, and the onset of significant 
production problems. 

6.3.3.2 MRL Assessments with PRRs. The assessment of manufacturing 
readiness should highlight any areas where an element or a key program-level 
manufacturing preparation area falls short of MRL 8/9 requirements; discuss the risks that 
these shortfalls pose to the program and the status of efforts to mitigate these risks; and 
estimate the schedule or funding changes required to correct any significant shortfalls. 

6.3.3.3 MRLs with PRRs. The MRL methodology may be used to assess the 
manufacturing, quality, and supplier management elements of a program. In addition, the 
scope of PRRs may include other functions, such as Test, Logistics, and Program 
Management. 

6.4 Manufacturing planning SAE AS6500 requires a manufacturing plan and lists 
the topics that should be addressed in the plan. Overall, the plan should describe how their 
manufacturing management system meets the intent and requirements of the standard. The 
program office should require a deliverable manufacturing plan. In this way the government 
provides added attention and focus to manufacturing planning and has the opportunity to 
influence the manufacturing approach. The plan should be developed prior to Milestone B (if 
possible) or during EMD. The program office should require updates to the plan throughout 
the production phase. TABLE III lists the topics to be addressed in a manufacturing plan, per 
SAE AS6500, and some guidance on each topic. It also lists sections of this handbook that 
may provide additional insight or background on the topic. 

  

Source: https://assist.dla.mil -- Downloaded: 2016-09-08T11:45Z
Check the source to verify that this is the current version before use.



MIL-HDBK-896A 
 
 

31 
 

TABLE III. Manufacturing plan guidance. 

Topic Handbook Reference Notes 

Manufacturing 
methods and 
processes 

6.2.2, 6.3.2, 6.5.1 Discuss the planned manufacturing 
methods and processes to produce the 
product. Include a major assembly 
sequence chart which identifies the key / 
critical processes relating to fabrication, 
inspection, and test. Discuss the 
maturity of the processes and 
associated risks. Manufacturing process 
maturity can be evaluated by performing 
Manufacturing Readiness Level 
assessments (www.dodmrl.com). 

Manufacturing 
technology 
investments 

6.2.1, 6.4.3 If applicable, discuss anticipated 
investments in the development or use 
state of the practice manufacturing 
technologies. (For example, additive 
manufacturing, cold spray to improve 
product quality and production yields.) 

Production control 6.5.1 Discuss the production control system, 
how it schedules work and resources, 
and how it ensures configuration control. 
Explain how planning will be verified 
prior to production. 

Producibility 6.2.1 Discuss the producibility process and 
specific, anticipated producibility 
projects. 

Material management 6.4.1.1, 6.4.1.2, 6.5.8.1 Discuss how make-or-buy decisions are 
made and how suppliers are chosen and 
managed. Discuss the process controls 
(critical parts list, obsolescence 
management, counterfeit parts and 
material prevention) that are in place or 
will be in place, to minimize product 
vulnerability due to the unavailability, or 
untimely delivery of materials supplies. 
Identify long lead items and associated 
schedules depicting procurement dates 
and need dates. 
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TABLE III. Manufacturing plan guidance - Continued. 

Topic Handbook Reference Notes 

Manufacturing system 
verification 

6.4.5, 6.5.6 Discuss how the planned manufacturing 
processes including the requirements for 
materials, test equipment, tooling, 
equipment, personnel skills, facilities, 
and related software will be verified to 
ensure they can meet production rate 
requirements. A pilot manufacturing line 
could be established to verify and test 
manufacturing methods, processes and 
procedures. 

Minimization of scrap, 
rework, and repair 

6.2.3, 6.5.3,6.5.4, 6.5.5 Discuss the tools and defect detection 
and prevention techniques that will be 
employed to ensure the quality of the 
products. These detection and 
prevention techniques may include 
inspection, test, defect trend analysis, 
and Statistical Process Control. 

Facilities 6.4.4, 6.4.7 Discuss the planned facilities and how 
they will meet the production needs. 
 
Ensure a facility review has been 
conducted that identifies the necessary 
facility requirements such as test 
equipment, training aids, building size, 
plant layout, and any other special 
considerations needed to support 
production rates. 

Test equipment 6.4.7 Discuss the anticipated tooling and test 
equipment and the schedule for 
developing, procuring, and verifying it is 
ready prior to the need dates. 

Capital commitments 6.4.3, 6.4.7 If applicable, discuss capital investments 
for production relevant resources 
(equipment, tooling, material) that is 
needed to meet production 
requirements. 
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TABLE III. Manufacturing plan guidance - Continued. 

Topic Handbook Reference Notes 

Personnel, skills, 
training 

6.4.6 Discuss the planned approach to 
acquire and train the workforce, 
including any special skills or 
certifications required. Provide a 
forecast of required manpower loading, 
by skill, over time. 

Customer furnished 
items 

N/A Discuss what customer furnished 
equipment or property is needed and the 
estimated quantity and need dates. 

Customer inspections 6.5.8.2, 6.5.9 Discuss plans for acceptance testing 
and the role of the government in 
product acceptance. 

Capacity analysis 6.4.4,6.4.5, 6.5.6 Discuss key assumptions and rate and 
yield goals that must be achieved to 
meet contractual delivery schedules. 

Manufacturing 
capability for critical 
manufacturing 
processes 

6.2.2, 6.5.3, 6.5.4, 6.5.5 Discuss the approach for identifying key 
characteristics and critical manufacturing 
processes and developing process 
control plans. Provide a listing of 
anticipated critical manufacturing 
processes. 

6.4.1 Supply Chain and Material Management 

6.4.1.1 Technology obsolescence and Diminishing Manufacturing Sources 
(DMS). Diminishing Manufacturing Sources and Material Shortages (DMSMS), the loss 
of sources of items or material, surfaces when a source announces the actual or impending 
discontinuation of a product, or when procurements fail because of product unavailability. 
DMSMS may endanger the life-cycle support and viability of the weapon system or 
equipment. 

6.4.1.2 Problem defined. Compared with the commercial electronics sector, 
the DoD is a minor consumer of electrical and electronic devices. The DoD is continuously 
seeking to prolong the life of its weapon systems. These trends cause DMSMS problems as 
repair parts or materials disappear before the end of the weapon system life cycle. While 
electronics are most likely to be discontinued, obsolescence of non-electronic and 
commercial off-the-shelf (COTS) items also poses a significant problem to weapon 
systems. In short, DMSMS is a threat to system supportability. The impact of technology 
obsolescence and diminishing manufacturing sources on the cost and performance of our 
Weapon Systems has increased significantly over the last ten years. This is due to the 
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accelerated rate of technology change (especially in electronics), our growing dependence 
on commercial sources, and the relatively long development time and operational life of 
our systems. 

6.4.1.3 Guidance. Solving DMSMS is complex, data intensive, and expensive 
process. There are basically only two approaches to solving DMSMS in a system: reactive 
(address DMSMS problems after they surface) and proactive (identify and take steps to 
mitigate impending DMSMS problems before programmatic impact). DoD policy 
prescribes the proactive approach. An effective DMSMS program does the following: 

a. Ensures that all parts and material to produce or repair the system are available 

b. Reduces, or controls, total ownership cost (TOC) 

c. Minimizes total life-cycle systems management (TLCSM) cost 

d. Eliminates, or at least minimizes, reactive DMSMS actions 

e. Evaluates design alternatives 

f. Provides for risk mitigation as it applies to DMSMS 

g. Evaluates more than one approach to resolve DMSMS issues 

h. Collects metrics to monitor program effectiveness. 

6.4.1.4 Importance of an accurate BOM. It is critical to recognize the 
importance of an accurate Bill Of Material (BOM) in creating a proactive DMSMS 
program. The BOM is the indispensable data resource that enables proactive DMSMS 
management. Without it, impact analysis, component analysis, prediction of 
discontinuance, and other DMSMS-related activities would not be possible. A BOM is a 
list of parts and materials (electronic, electrical, mechanical, and so on) needed to produce 
a system or assembly. An indentured BOM shows the relationship (generally in a top-
down breakout format) of components to board, to box, and to system. Ideally, the BOM 
should be in an editable electronic open-standards-based format. Common sense dictates 
that the level of DMSMS management practice cannot possibly be the same for every 
weapon system and therefore it cannot be one size fits all. Programs are encouraged to 
discuss this matter with their contractors, suppliers and Subject Matter Experts (SME) 
within DoD to develop a viable effective approach for their respective programs. 

6.4.1.5 Lessons learned. In some cases, commercial demand for materials or 
components that have historically been used only in defense systems can nearly push DoD 
out of the market. Two examples are Graphite Carbon Fiber composites used in low 
observable airframe manufacturing and Liquid Crystal Displays (LCDs) used in avionics 
components 

a. The demand for graphite for the sport and entertainment industry (e.g. golf 
clubs and tennis racquets) stretched lead times until additional production facilities came 
on line to accommodate the increased demand. The best strategy in this case was early 
anticipation of military and commercial needs for graphite making it possible to lock up 
production capacity options with the main suppliers in advance. 
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b. The explosion in the personal communication and gaming industry (e.g. cell 
phones and electronic game systems) made it nearly impossible to interest manufacturers 
of LCDs in a production run of a few hundred for a new fighter program when commercial 
demands for quantities in the millions were waiting. The best strategy in this case has been 
cooperation in development of new components across different platforms, and even 
across services, wherever possible. Rather than demanding a different LCD for the 
program A, program B and program C when the function they serve is basically the same, 
we need to agree on a common component…a design as close to commercial equivalents 
as possible. The combined demand for this common component is more attractive to 
potential producers. 

6.4.1.6 Counterfeit part prevention. According to the General Accountability 
Office (GAO), the increase in counterfeit parts is one of several potential barriers the DoD 
faces in addressing part quality problems. They further acknowledge that counterfeit parts 
have the potential to seriously disrupt DoD’s supply chain, delay missions, affect the 
integrity of weapon systems, and ultimately endanger the lives of our troops. Traditionally 
supply chains are critical parts of larger enterprise. Attention must be paid to all things 
coming into that enterprise that could someday affect the enterprise in an adverse manner 
and introduce vulnerabilities. As the DoD draws from a large network of suppliers in an 
increasingly global supply chain, there can be limited visibility into these sources and 
greater risk of procuring counterfeit parts. 

6.4.1.7 Incentives for counterfeiting. Profit is the primary incentive for 
counterfeiting. However, there are unique conditions that make aerospace and defense 
products susceptible to counterfeiting, including a long life cycle and Diminishing 
Manufacturing Sources and Material Shortages (DMSMS) issues. Aerospace and defense 
products are generally designed for a long life cycle. For example; The B-52 went into 
service in February 1955 and currently has an anticipated retirement date of 2040. 
Therefore, supporting aerospace and defense products throughout their lifecycle 
sometimes requires the use of parts that may no longer be available from the Original 
Equipment Manufacturer (OEM), authorized aftermarket manufacturer or through 
franchised or authorized distributors or resellers. When parts and materials, such as 
microcircuits, are acquired through distribution channels other than those franchised or 
authorized by the original manufacturer, there is the potential to receive parts that do not 
meet the original specifications. 

6.4.1.8 Guidance. A comprehensive counterfeit parts program must address, as 
a minimum, the following topics: 

a. requirements 

b. prevention 

c. detection 

d. reporting. 
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6.4.1.9 Requirements. Effective contractual requirements are critical to 
focusing a program’s prime contractor to take the proper course of action. Develop 
requirement inputs to Requests for Proposals (RFPs) and Statements of Work/Statements 
of Objectives (SOW/SOO) An example for a SOW input focusing on counterfeit part 
prevention follows. 
Example: The “contractor” shall develop and implement a Counterfeit Parts 

Prevention (CPP) Program in compliance with SAE AS5553 to prevent 
the inclusion of counterfeit parts or parts imbedded with malicious logic 
into products intended for sale to the government. As part of CPP, the 
contractor shall provide Certificates of Conformance (CoC) as well as 
acquisition traceability for Original Component Manufacturers (OCMs) 
and franchised/distributors in the supply chain, for example Certificates of 
Conformance and Traceability (CoCT). As an alternative to a stand-alone 
CPP, the elements of DI-MISC-81832 may be included in the Program 
Protection Plan (PPP). 

6.4.1.10 Prevention. Potential preventative actions are listed below. 

a. Government and contractors should make sure all parts are procured directly 
from OEMs/OCMs and authorized distributors, rather than parts brokers, independent 
distributors, or the gray market. Contractors should make sure government program 
managers are notified when the parts are not obtained from the OEM and/or authorized 
distributors. 

b. Primes should specify flow down of applicable requirements to include 
AS5553 to lower tier suppliers and maintain processes to verify such requirement. 

c. Contractors should use robust quality management systems (for example, 
AS9100 for equipment providers and AS9120 for distributors). 

d. Contractors should conduct surveys of their suppliers’ inspection and testing 
capabilities and audit their counterfeit prevention program. 

e. Traceability is a key means for verifying legitimate parts in any supply channel. 
Organizations should require their suppliers to trace parts back to OEMs/OCMs in order to 
prove part authenticity. 

f. All requirements should be communicated to an organization’s suppliers 
instead of assuming that suppliers take unilateral actions to prevent counterfeits. 

g. The government should benchmark other companies and suppliers and pool 
information on anti-counterfeiting strategies. Contractors should benchmark and share best 
practices within their own supply chain. 

h. Contractors should maintain a register of approved suppliers, including the 
scope of the approval, to minimize the risk of counterfeit parts supply. 
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6.4.1.11 Detection. Potential detection actions are listed below. 

a. Primes and suppliers should conduct training in Counterfeit Parts Avoidance 
for Inspectors, Operators, Auditors, and lower tier suppliers to include awareness of 
AS5553. Training should discuss how to inspect parts and identify possible counterfeits 
(for example, non-conforming part markings). 

b. Primes and suppliers should institute strong incoming quality assurance on all 
parts and visually inspect. Paperwork is not a substitute for testing. 

c. Prime contractors should require certificates of conformance, testing 
certification, and procedures for handling any counterfeit parts that slip through the 
system. 

d. Processes should specify methods for physical identification, 
segregation/quarantine, and control of suspect or confirmed counterfeit parts to preclude 
their use or installation. These processes should ensure the counterfeit parts do not re-enter 
the supply chain. 

e. The documented processes should ensure detection of counterfeit parts prior to 
formal product acceptance. 

f. Contractors should assess potential sources of supply (electronic parts, 
assemblies, and equipment suppliers) to determine the risk of receiving counterfeit parts. 
Assessment actions may include surveys, audits, review of product alerts (for example, 
GIDEP, ERAI), and review of supplier quality data to determine past performance. 

g. If items are confirmed to be counterfeit, contractors should not return the part 
to the actual or potential supplier at any time prior to criminal authorities’ release of 
disposition. 

6.4.1.12 Reporting. Potential reporting actions are listed below. 

a. Reporting processes should ensure all occurrences of counterfeit parts are 
reported to internal organizations, customers, government reporting organizations (for 
example, GIDEP), industry supported reporting programs (for example, ERAI), and 
criminal investigative authorities. 

b. When contractors are notified by their suppliers regarding a potential suspect or 
a confirmed counterfeit part, they should notify the program offices as soon as possible 
(within 30 days of the original notification). 

c. Suspected counterfeit material should be submitted, analyzed, and a resolution 
determination should be made using the Joint Deficiency Reporting System (JDRS) 
Additional information about JDRS can be found at www.jdrs.mil. 

6.4.2 Manufacturing technology development. Program offices should 
work with their respective service’s research lab for assistance with technology expertise, 
project management, and funding. The Manufacturing Readiness Levels of new 
technologies should be assessed to minimize transition to production risks. 
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6.4.3 Cost. Cost realism and credibility are primary concerns in a budget-
constrained environment. Early, frequent, and increasingly accurate Production Cost 
Modeling (PCM) becomes extremely important. The PCM must be continuously refined as 
the design definition improves and should be used to estimate the projected production 
cost of the proposed design against a threshold value for affordability. The PCM addresses 
all design driven cost elements and be updated to stay current with the evolving product 
design and production plans. The PCM plays a key role in assessing the overall progress of 
the development program. Current cost estimates at major milestones, plus the status of 
current and planned cost risk abatement efforts, help determine whether to proceed to the 
next phase. The model has three major attributes: 

1. ability to be used in design trades to assess the cost impacts of specific design 
changes, alternative production processes or process improvements. 

2. ability to incorporate the most recent actual manufacturing costs into the 
production cost estimate. 

3. ability to support finance and contracting processes (such as independent 
program estimates, proposal preparation, fact-finding & negotiations, budgeting, and what-
ifs). 

6.4.3.1 Guidance. The intent of PCM is to provide a tool for predicting and 
controlling design driven production costs. The PCM should also predict the production 
cost impacts of production rate and delivery schedule variations that are sure to occur in 
every program. 

6.4.3.2 Define specific parameters. For the contractor to develop a valid cost 
model, the government must define specific parameters in early development. These 
include variables such as constant versus then year dollars, production quantities and rates, 
and any fiscal year budget constraints. The production quantities and rates are important in 
defining the return on investment for capital equipment costs and other cost reduction 
initiatives that have a strong influence on product design. To avoid a "point" design 
solution, the production rates and volumes may be defined as ranges with the target rate 
identified. With few exceptions, these assumptions have a significant impact on the final 
design and production cost. The assumptions must be as realistic as possible and the 
rate/volume ranges as narrow as possible. 

6.4.3.3 Analysis procedure selection. Any appropriate analysis procedure may 
be used in developing the PCM (parametric, historical, analogy, or detailed engineering 
estimates) depending on data availability and the maturity of candidate designs. In most 
cases, it will be important to account for Special Tooling (ST), Special Test Equipment 
(STE), Support Equipment (SE), Government Furnished Property (GFP), sustaining 
engineering and rate tooling in the estimate. The PCM should include factors that account 
for inspection, test, scrap, and rework. Many commercial cost models are available for use 
and/or adaptation to fit company-unique accounting systems. The level of detail and the 
complexity of the cost models appropriate for a product will vary depending on the 
product's complexity, the program phase, size, and other related factors. 
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6.4.3.4 Modeling production costs. Accurately modeling production costs 
early in development is virtually impossible and there will always be an uncertainty 
interval associated with the resulting estimate. This uncertainty interval will be relatively 
large early in the development phase, but should continuously shrink as the design and 
process capabilities solidify. This is because inputs to the PCM will be initially calculated 
with the limited fidelity of Rough Orders of Magnitude (ROM) estimates or with 
parametric data. The PCM should be refined as the detailed design and manufacturing 
plans are developed  

6.4.3.5 Development and maintenance of the PCM is a team effort. The 
contractor and the government should make the development and maintenance of the PCM 
a joint goal. Each group should work together to define the overall architecture, input 
requirements, ground rules & assumptions, levels of detail to be included, and output 
formats. Over time, organizations have approached this from two extremes, some with the 
contractor exercising total ownership over the model, others with both the contractor and 
government each running their own independent models. A single model, jointly agreed 
upon, provides the best path and engenders a close, teaming relationship. It also gives both 
the government and contractor a common understanding and language with which to 
evaluate potential design and programmatic changes. It also facilitates contracting 
processes, such as negotiations of yearly lot buys. 

6.4.3.6 Lessons learned. Start early looking for cost reductions. Studies have 
repeatedly shown the best opportunities for system cost reduction occur during early 
program development phases. The early initiation of PCM supports cost reduction 
activities by helping to identify the areas with the greatest potential for payback. Previous 
experience with Design to Cost (DTC) approaches has been disappointing. It can be 
erroneously applied as an “accounting afterthought” by merely booking changes to the cost 
estimate as opposed to providing direction on where to focus cost reduction activities. 
Also, in many cases, the ground rules and assumptions that fed production cost models 
(rate, volume, and schedule) were not updated to reflect program changes and so the 
production cost estimates produced by the DTC activities had no validity. 

6.4.3.7 Maintain PCM. To be effective and credible, the PCM must be 
maintained and kept current with all program ground rules and assumptions. Configuration 
control of joint PCM models must be explicitly documented. Specifically, both sides must 
agree on how changes are to be made and how disputes are to be handled. 

6.4.4 Manufacturing Modeling and Simulation (M&S) M&S addresses the 
properties and interactions among the materials, production processes, tooling, facilities, 
and personnel involved in a new product’s design and manufacture before the product and 
process designs are released. The goal is to impact producibility while changes can still be 
made in a cost effective manner. In traditional product development approaches, by 
contrast, decisions made during initial development phases have often locked 65% to 75% 
of the cost into the product, and have proven difficult or extremely expensive to change 
once tooling is built and production has begun. Ideally, M&S is used very early in 
development to evaluate the producibility and affordability of proposed design concepts, 
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and continues to be used and refined providing ever increasing fidelity as the system 
design evolves. 

6.4.4.1 Manufacturing cost. The cost associated with manufacturing generally 
decreases over time due to ongoing improvements in production methods and the 
experience gained by the workforce as they repeat assembly tasks. M&S accelerates this 
improvement by allowing some of the anticipated methods improvement to occur before 
the first unit is assembled. Virtual tools let the producer begin production at a lower T1 
cost, in effect, skipping much of the inefficiency common early in production. 

6.4.4.2 Simulations. Simulations can also be used to model new factory 
designs, such as during a Value Stream Analysis exercise. The planned version of the 
factory can be analyzed in a virtual environment for capacity, flow, transportation times, 
and other parameters, prior to being implemented. The design can be modified as needed 
before physical changes are made to the facility. The transition to the planned factory may 
take a significant amount of time and the simulation can be used to validate progress along 
the way. 

6.4.4.3 Product design. Product design largely consists of repeated iterations 
of simple design-build-test-analyze cycles. Historically the build part of these cycles 
included construction of physical mock-ups. While these physical mock-ups allowed for 
visualization of the product and rehearsing of some build processes, they took a lot of time 
and money to build, were cumbersome, difficult to modify, and they took up a lot of floor 
space. Iterations in an M&S environment are often possible at a much lower cost and on 
significantly more accelerated schedules than in a physical environment. The result is 
greater insight into the effect of design changes at each stage, and the ability to quickly 
iterate the design development to approach an optimum solution in less time. 

6.4.4.4 Benefits of M&S. Using the electronic product model with various 
simulation tools also gives the producer the ability to extend the utility of M&S to include 
optimization of the factory production process. By simulating various factory layouts and 
flows, the entire development process can be optimized and shortened. So, virtual tools 
hold great potential for reversing current trends toward longer and longer development 
cycles. Like line proofing, M&S supports risk management activities by verifying and 
validating the capabilities of the production facilities. Unlike line proofing, M&S does not 
require actual production tooling and a first set of parts since it builds virtual rather than 
actual products or product components. Manufacturing simulation tools like Variation 
Simulation Analysis (VSA) are used to identify sources of variation in the production 
processes and to predict production yields. By simulating the production of 100 or more 
parts to a specified design tolerance given known production limitations, production yields 
can be accurately predicted early in the design process, months before metal is machined 
and hardware is produced. In this way, the designer can identify limitations to the 
producibility of the design early in the development process, when it can be fixed at a 
lower cost. 

6.4.4.5 Prototyping tools. Stereo Lithography Apparatus (SLA) and Selective 
Laser Sintering (SLS) have long been rapid prototyping tools that provide sub-scale or 
full-scale physical models directly from CAD designs. 3D Printing and Additive 
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Manufacturing extend the same principles but include an ever increasing array of material 
options to produce working production parts instead of models. While current capabilities 
are still limited to a very specific grouping of parts (like circuit boards and non-load 
bearing structural and mechanical components) 3D Printing is widely seen as the future of 
manufacturing. 

6.4.4.6 Guidance. Virtual manufacturing simulations should be integrated with 
CAD tools, MRP, scheduling tools, time standards, work instructions, and planning. 
Virtual tools can address different levels of manufacturing processes, including: 

a. yield modeling: These models are used in the electronics fabrication industry to 
predict first pass yields based on key design and process attributes. Once a baseline 
process is characterized, process yields can then be predicted for new or changed designs. 

b. manufacturing ergonomics modeling: These models focus on individual 
assembly processes and include computer mock-ups of parts and processes to help ensure 
human factors considerations are taken into account. 

c. production line modeling: These models can vary from hand-drawn value 
stream maps to off-the-shelf factory simulation software (for example, Java® based 
AnyLogic®, Simio ®, Arena®, or equal). These models often address material movement, 
processing times, and scrap, rework and repair levels to ensure that production delivery 
rates can be achieved. 

d. supply chain modeling: The most common supply chain models focus on 
supplier delivery rates and inventory levels. However, more complex factors could be 
considered, such as impacts of disruptions, supplier capabilities and yields, learning curve 
effects, obsolescence issues. 

e. value stream mapping: The value stream map is a conceptual flow diagram 
which shows the process for creating a product from raw material all the way to the 
customer. It should be complete with all types of information, material, parts, and physical 
processing times and physical movements as well as any queues that build into the system. 
Once the current state of the facility is accurately modeled, it’s time for the team to go to 
work on evaluating where improvements can be made. 

6.4.4.7 Lessons learned. The ability to assess manufacturing capabilities in a 
synthetic environment early in the design process has contributed to lower total costs, 
reduced technical and schedule risk in the transition to production, and increased 
confidence that programs can meet affordability targets. The effectiveness of the early 
implementation of M&S was demonstrated on a major commercial aircraft program, which 
reported a 90% reduction in error related changes after the release of the product design. A 
program to redesign an existing bulkhead on a major aircraft program demonstrated the 
benefits of M&S by comparing results to those of parallel activities without M&S. The 
design cycle time was reduced by 33%, and design cost was reduced by 27%. Another 
program used solid modeling, parametric design, and M&S tools to redesign a tail 
stabilizer on a major trainer aircraft program. EMD phase savings of 28% were achieved in 
comparison to the lower of two competitive bids using conventional design approaches. 
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6.4.4.8 Develop data beyond preliminary design. A basic type simulation 
allowed a major engine program to correct a supply chain issue at a vendor which was 
being blamed for late deliveries and capacity issues. The simulation pointed to delivery of 
material from the prime contractor to the supplier as the cause of production flow 
problems. Modeling and simulation would be effective at analyzing surge capability for 
individual factories and the supply chain. 

6.4.5 Manufacturing System Verification. Refer to Section 6.5.6 
Production process verification for detailed information about manufacturing system 
verification and how it relates to similar activities. 

6.4.6 Manufacturing Workforce. The contractor’s anticipated workforce 
needs (both in numbers and skills) should be evaluated as part of MRL assessments and 
PRRs. the manpower required for a given program should be compared with projected 
requirements for all programs in a given facility to determine if there are future constraints 
that must be addressed. To assess the ability to acquire skilled workers, consider the types 
of local industries, the competitiveness of the labor market, and the availability of 
technical and higher education. 

6.4.7 Tooling / test equipment / facilities. Tooling and test equipment can be 
major cost and risk drivers and must be addressed in the considerations of alternatives. If 
new/unique tooling and/or test equipment is required, the program office will need to 
manage its design, development, fabrication, qualification, and maintenance throughout 
the development and production phases. 

6.4.7.1 Establishment of tooling and test equipment. Programs need to 
establish their tooling and test equipment concepts and determine if they need to develop 
new/unique tooling and test equipment early in product development. If new/unique 
tooling and test equipment are needed, the risk this presents in achieving program 
requirements and objectives must be addressed early. An assessment of new/unique 
tooling and test equipment will be required to evaluate the various producibility 
alternatives being considered and to understand the overall requirements of tooling and test 
equipment and how it will impact the cost. This information can be used to understand the 
cost and performance risk in selecting the best tooling and producibility alternatives and to 
begin risk planning to address the potential risks. 

6.4.7.2 Equipment use. Once the tooling and test equipment requirements are 
established, the equipment should be built and used as early as possible in a production 
representative or pilot line environment. The rate capability and yield rates of EMD 
tooling and test equipment must be evaluated to ensure there is adequate capacity to 
proceed into production. The contractor should conduct capacity analyses to determine the 
number of tools and test sets needed for both Low Rate Initial Production (LRIP) and Full 
Rate Production (FRP). The capability and capacity estimates should include key elements 
such as cycle time, yield, scrap and rework, etc. The underlying rate and yield assumptions 
should be monitored during EMD and early LRIP lots to ensure the assumptions made 
during the capacity analyses are being met. Preventive maintenance procedures should also 
be developed and verified at this time. 
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6.4.7.3 Program manager role. Program managers must plan for the 
preservation and storage of special tooling, which includes jigs, dies, fixtures, molds, 
patterns, taps, and gages which are of such a specialized nature that without modification 
or alteration their use is limited to the development or production of particular supplies or 
parts. Special tooling must be serially managed using part numbers, serial numbers, unique 
item identifiers, and/or national stock numbers. Planning for the preservation of special 
tooling must include the methods of preservation and packaging, storage standards, storage 
location, inspection requirements, and the contracts and budgets to execute the 
preservation and storage. Program managers should collaborate with their industry 
counterparts and DCMA to establish an efficient process for dispositioning unnecessary 
and/or obsolete tooling and test equipment throughout the program lifecycle. Program 
managers should also plan for the end of production, in advance of need, by  

a. identifying tooling and test equipment that will be necessary for ongoing 
operational/logistics support efforts, and  

b. planning for an orderly production line shutdown that minimizes plant 
disruption, “exits” production within budgetary constraints, and preserves, to the greatest 
extent practicable, flexibility in support of post-production activities (e.g., production line 
re-start or ongoing spares production). 

6.5 Manufacturing operations management 

6.5.1 Production scheduling and control. To obtain insight into a 
contractor’s production control system, a program office may request on-line access to the 
contractor’s system or, as a minimum, to any metrics generated by the system. As an 
independent schedule assessment, the program office may also wish to create a Line of 
Balance (LOB) metric to track build progress and predict future delivery performance. As 
defined in AS6500, LOB is a production control technique that combines features from a 
critical path scheduling timeline with a required delivery schedule that is presented in 
graphic form. It shows the delivery objective, the sequence and duration of all activities 
required to produce a product, the current status of production items, and an assessment 
showing the relationship of actual component production to schedule. The knowledge of 
the critical path of production is essential knowledge for managing manufacturing 
operations. Lean efforts and other optimization initiatives should primarily be focused on 
critical path operations; otherwise, a reduction in span time may have little or no overall 
effect on the overall schedule performance. The type of production scheduling used by the 
contractor can have a significant effect on schedule performance and manufacturing 
efficiency. There are two primary approaches: 

a. A push system is typically governed by an automated scheduling program that 
directs that product be produced at a station and then moved to the next station based on 
anticipated task durations for station. Push systems can cause overproduction and a build-
up of unnecessary inventory 

b. A pull system only tells a previous station to produce product when it is needed 
and may rely on Kanban cards to communicate throughout the factory. Pull systems are 
preferred approaches in lean manufacturing operations. 
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6.5.2 Manufacturing Surveillance 

6.5.2.1 Factory performance data. In the current acquisition environment, 
submission of factory performance data is usually not a contractual requirement. Not 
having insight into this data, however, means blinding the government to a contractor’s 
real ability to perform to a contract delivery schedule. Lack of data degrades a program 
office’s ability to respond to “What-If” scenarios and to independently assess a 
contractor’s recovery schedule. The government and contractor team should develop an 
agreement of what data will be informally provided to the government. The data can be in 
the contractor’s format to avoid the additional expense of converting the data. Some 
contractors provide the government online access directly to their databases and metrics. 
Data that should be provided include: 

a. Summary Production Schedule. 

b. Labor Performance Data (actual hours versus work measurement standards). 

c. Line of Balance (or similar status) charts. 

d. Scrap, Rework and Repair metrics (Cost of Quality metrics should be pursued 
in addition to Scrap, Rework and Repair; additional information can be found in 6.5.9.4). 

e. Supplier schedules and status. 

6.5.3 Continuous Improvement. A key element of continuous improvement 
is the elimination of waste. Waste can come from overproduction, waiting time, 
transportation, processing, inventory, excess motion, and product defects. The following 
ideas and tools should be considered to eliminate these wastes and to implement a world-
class, lean manufacturing operation:  

a. Continuous or Single Piece process flow – production part movements based on 
a principle of Lean Manufacturing that breaks the production line into a sequence of short 
duration, perfectly synchronized tasks which minimize delay, wasted effort, and in-process 
inventory. 

b. Just-in-time manufacturing and inventory systems – a resource allocation and 
part supply strategy (requiring a predictable well timed production process) where the 
delivery of production parts, tools and other resources occur exactly when (or very shortly 
before) they are needed. 

c. Pull systems – a production control and synchronization approach designed to 
facilitate small lot sizes and ultimately single piece flow by limiting in-process inventory, 
bringing the next work piece from the previous work station only when the station is ready 
to receive it (often implemented with Kanban cards). 

d. Empowered employee teams – an organizational strategy allocating authority 
and responsibility to appropriately trained employee teams (usually with cross-functional 
membership) for short, intense improvement efforts or long term project management.  

e. Cellular manufacturing – a method for laying out production organizations in 
product-based cells as opposed to traditional process layouts based on common machine 
type, so that each business unit is a complete production organization that can be flow 
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analyzed and optimized. Multi-skilled operators are a key to the success of manufacturing 
cells. 

f. Standardized Work and Kaizen events – Standardized work involves detailed, 
step-by-step guidelines to assure consistent processes with minimal part-to-part variability. 
Kaizan events are concerted, continuous improvement activities that result in improved 
standard work packages.  

6.5.3.1 Work measurement program. To measure the progress and success in 
becoming more efficient, companies must select appropriate metrics. Some form of a work 
measurement program is needed to develop labor standards that quantify the amount of 
time it should take a qualified worker, with the right parts and tools, to perform a task. The 
work measurement program should include a data collection system to then measure the 
actual time it took and analyze the types of inefficiencies, their root causes, and ways to 
improve performance. Typical metrics that are valuable for providing insight into factory 
efficiency include: 

a. Scrap, Rework and Repair: hours or dollars as a percentage of manufacturing 
costs (note, however, that Cost of Quality, discussed below in 6.5.9.4 , is a better metric 
for driving continuous improvement efforts). 

b. Realization Factors: the actual time to perform a task divided by the engineered 
labor standard. Metrics should include a breakout of the elements of realization, such as 
operator learning, quality problems, waiting time, engineering errors, machine downtime, 
etc. Some companies track this as “efficiency” which is calculated by dividing the 
standards by the actuals (the inverse of realization.) 

6.5.3.2 Lessons learned. Many companies fall into two common traps. The 
first is to (correctly) “prototype” the implementation of lean in a limited area or production 
cell. However, even though the area may show tremendous improvement, the company 
does not follow through with the institutionalization of Lean across the rest of the factory. 
The second trap is to conduct a single Kaizan event in a given area and claim success. The 
Toyota Production System emphasizes continual improvement and the conduct of Kaizan 
events periodically in the same area. There are always opportunities to improve – they are 
never exhausted. Creation of innovative financial incentives may be required to encourage 
all team members to embrace the long-term benefits of Lean over short-term profits. Tools 
such as Award Fees, incentives tied to target price curves, or even a separate pool of 
money dedicated to efficiency investments have been helpful on some programs. 

6.5.4 Process control plans. Variability Reduction (VR) is a systematic 
approach to improve product performance, reliability, cost, and reduce manufacturing span 
times by reducing variation in key product characteristics and the processes that create 
them. It is based on a well-known quality management principle: the focus on processes, 
continuous improvement, and the use of data and facts to make decisions. VR efforts 
during development are intended to lay the foundation for continuous improvement in 
product quality during the production phase. VR activities that should be undertaken in 
development are:  

a. develop control plans for critical processes 
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b. begin data collection on key processes to determine process capabilities 

c. feed these process capabilities back to the designers 

d. implement improvements in design standards and/or the design process, and 

e. implement improvements in the design and/or manufacturing processes, as 
required. 

6.5.4.1 Data analysis. As development progresses and developmental units are 
being built, more process data becomes available. This data must first be analyzed for 
applicability, given potential design and process changes. When the data is deemed 
acceptable, it can be used to gain an initial understanding of the process capabilities. This 
process capability information should be fed back to the design engineers, forming what is 
sometimes called a closed-loop design process. 

6.5.4.2 Process improvement. Production phase variability reduction (VR) 
efforts are primarily concerned with addressing capability shortfalls with special 
variability reduction efforts, and maintaining an environment of continuous improvement 
in product and process quality. During the production phase, process capability and 
product quality should continue to improve even after the baseline program requirements 
have been achieved. The team should strive to achieve process stability for all critical 
processes and to continually improve process capabilities where capability improvement 
will result in a better product at a reduced cost. VR activities that should be undertaken in 
production are: 

a. data collection during production operations to monitor process performance 
and initiate preventive actions 

b. use of process improvements during build activities 

c. assessment of feedback received from field users and support personnel, and 
field reliability data, and 

d. use of design enhancements to improve performance, producibility, and 
affordability. 

6.5.4.3 Conclusion. VR is based on the concept that simply attaining 
specification limits (also known as a “goal-post mentality”) is not the best measure of 
quality. Rather, the degree of variability inherent in a key process and its relationship to 
design limits (process capability) becomes a measure of merit. According to FIGURE 5, 
any deviation of one of a product’s principle functional characteristics from nominal 
results in a loss to society. For defense acquisition programs, this loss to society can be 
defined in terms of performance degradations, increases in life cycle costs, or both. The 
larger the deviation from nominal, the higher the loss. Therefore, the logical solution is to 
reduce the amount of variability by centering the process output as tightly as possible on 
the nominal specification value. 

Source: https://assist.dla.mil -- Downloaded: 2016-09-08T11:45Z
Check the source to verify that this is the current version before use.



MIL-HDBK-896A 
 
 

47 
 

 
FIGURE 5. Taguchi Loss Function. 

6.5.4.4 Benefits. By reducing and controlling hardware variability, the 
customers and suppliers can realize many benefits, including: 

a. Quality improvement in the form of better fit, performance, and reliability 

b. Cost savings from reduced assembly hours 

c. Cost reduction due to reduced scrap, rework, and repair 

d. Better design decisions made possible by the engineer’s knowledge of the 
factory’s process capabilities resulting in less design rework, lower development cost, and 
shorter lead times 

e. Reduced reliance on end-item inspections to detect nonconformance resulting 
in reduced inspection cost 

f. Customer satisfaction due to increased service life 

6.5.4.5 Guidance. FIGURE 6 shows the sequence of activities for a Variability 
Reduction Program. 
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FIGURE 6. VR general approach. 

6.5.4.6 Determine KCs. Two aspects of variability reduction affect the design 
of characteristics that have been identified as key. 

a. Initial design tolerances should reflect process capability limitations. Data from 
similar parts and processes can be used to give designers guidance on the tolerances they 
can reasonably expect the manufacturing organization to consistently attain without 
significant improvements to production processes and equipment. This process capability 
data may be collected with automated tools, and is often recorded in databases or design 
handbooks.  

b. If indications are that manufacturing cannot reliably reproduce a proposed KC, 
the designers should try to eliminate that feature or, at a minimum, make it more robust 
and less sensitive to variation. These design modifications are nearly always less expensive 
than the two alternatives: upgrading the factory or accepting the cost of poor quality. 

6.5.4.7 Develop process control plans. For each critical process related to a 
KC, the contractor should document plans to control the process to ensure KC variation is, 
at a minimum, within spec, and as a goal, reduced as much as feasible. These process plans 
may cover multiple KCs, since a single process may produce more than one key 
characteristic. The method and frequency of documentation depends on the complexity of 
the characteristic and the process. The control plan should always include a brief 
explanation of the KC, what data will be collected, where in the process it will be 
collected, how it will be collected, and how it will be analyzed (types of charting and who 
will analyze it). Additional content will vary with the type of key characteristic. 
Traditional Statistical Process Control charting is not necessarily required for all KCs, but 
it is highly encouraged. As a minimum, some data must be collected to determine and 
document product conformance. Process control plans should also address the 
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measurement system and its ability to accurately ensure product conformance to 
specifications. Process control plans should be considered dynamic and the IPT should 
adjust them periodically to account for changes in process capability. 

6.5.4.8 Collect and chart data. Data should be collected in accordance with 
the process control plan. Early in development when few items are produced, short-run 
techniques must be used to analyze data to make statistically significant observations. One 
option is to use data from other products produced using the same process. Numerous 
industry sources are available to assist in the collection and analysis of limited data. 

6.5.4.9 Initial variation acceptability. To determine acceptability, you must 
calculate the process capability index (Cpk), following the guidance in 6.5.5 Process 
capabilities. 

6.5.4.10 Adjust inspection frequency. If process variation is acceptable, 
inspections may be reduced. Once the process has demonstrated capability and control, 
certified operators may be allowed to rely on Statistical Process Control (SPC) charting to 
monitor and accept products and to ensure that no major shifts in the process occur. The 
quality organization may need only audit the SPC data collection process and/or sample 
the final product to ensure the process control plans are effective. 

6.5.4.11 Identify and control key sources of variation. If initial variation is not 
acceptable, the team must identify the sources of variation, both the common and special 
causes. Special cause variation is variation that is not inherent to a process, is due to some 
outside (often controllable) influence, and is usually detected by its predictable, 
nonrandom frequency. For example, it may include variation introduced by tooling, 
machine programming, or drill bit wear. These special causes must first be removed to 
determine the true expected output of the process. The remaining variation is termed 
common cause variation and results from causes inherent to the process. Its frequency of 
occurrence is unpredictable and random. These cannot usually be eliminated without a 
major change to the process (such as by the installation of humidity controls in a humid 
environment).  

6.5.4.12 Understand the process. Whether variation in a process is special 
cause or common, it is necessary to gain a complete understanding of the process itself in 
order to identify and control sources of variation. For this reason, many variability 
reduction methodologies include process flowcharting and a detailed analysis of inputs, 
outputs, and controls for each process step. The flowchart, and the detailed data associated 
with it, serves as a starting point for identifying and controlling sources of special cause 
variation. 

6.5.4.13 Variation acceptability. If the variation is still not acceptable after 
special causes have been eliminated and common causes controlled to the extent possible, 
other actions must be taken. In some cases, it might not be economically feasible to reduce 
variation by changing the production process. The following are some options: 

6.5.4.14 Examine redesign to eliminate KC. The preferred option is to redesign 
the product to eliminate the sensitivity of the design to the key characteristic; the 
characteristic may still exist, but the design is more robust so that it is no longer critical. 
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Another option, if performance allows, is to open the design tolerances on the 
characteristic. By definition, this will improve the Process Capability Index (Cpk). In 
design development, tolerances should be set as wide as possible. These tolerances should 
be loosened later in production only if it is determined that they were too tight to begin 
with, or something has changed in the design of the system to make the initial tolerances 
unnecessary. This action may also require changes to interfacing parts or relaxation of 
requirements. 

6.5.4.15 Adjust process control plan. If process variation is still not acceptable, 
additional controls (such as inspection) may be added to ensure that only conforming 
product is delivered to the next step in the process. However, many years of experience 
with inspection have shown that it is not a perfect solution. Most inspection is still 
performed by humans, who have a limited capability. Even if every item is inspected, there 
is still a probability that some nonconforming product will be accepted. The use of go/no-
go gauges is an industry preferred method to simplify inspections and enable inspectors to 
be more successful.  

6.5.4.16 Additional guidance. One method of contractually implementing KCs 
and VR is to include AS9103 in the SOW. 

6.5.4.17 Measurement Systems Analysis. Since data and decision making go 
hand-in-hand, the quality of the measurements from which the data is derived is very 
important. Factors like measurement selection, calibration, and gage repeatability and 
reproducibility directly influence the process output and should be evaluated as part of the 
overall process capability and control planning. A Measurement Systems Analysis 
evaluates the test method, measuring instruments, and the entire measurement process to 
ensure the integrity of the data used for analysis and to understand the implications of 
measurement error on decisions made about a product or process. 

6.5.4.18 Additional guidance. Additional guidance on Measurement System 
Analysis, which is a significant part of variability reduction, and can be obtained in 
Section 8 of AS9100, ASTM E2783, and the AIAG Measurement Systems Analysis 
Manual. 

6.5.4.19 Lessons learned. It is easy to lose the focus on processes and instead 
focus on product. Since key characteristics are naturally product related, there is a 
tendency to gather data on a part number by part number basis, losing sight of the fact that 
similar KCs on different parts may have been created with the same process. Metrics can 
be an extremely contentious issue. First, it is difficult to distill down a voluminous amount 
of complex data into a simple, easily understood chart. VR metrics can also be easily 
misinterpreted by those not familiar with statistical terms. For example, if a process is 
reported as “statistically not capable,” it may have a Cpk slightly under 1.0, but can still 
have a yield of nearly 99%. Additional process controls may also be in place to ensure 
conforming product. However, metrics are extremely important to assess the overall 
progress towards achieving process maturity and capability. 

6.5.4.20 Measure success by results. Although there are almost as many ways 
to do Variability Reduction as there are contractors and subcontractors, the principles of 
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each methodology should begin with the goal of reducing quality costs and the philosophy 
of continuous improvement. Rigidly applying a methodology and generating and 
displaying SPC charts without a good understanding of the nature of the variability being 
controlled will be less than successful. For this reason, question anyone who wants to 
prove their Variability Reduction program is successful by showing a stack of charts. The 
true measure of success is results (fewer rejects, lower cost) and the only way to attain this 
is to understand the production process. 

6.5.4.21 SPC short run application. Some manufacturers in DoD avoid using 
SPC because of low quantities and the belief that it is only applicable to large production 
runs. However, there are many short run SPC techniques developed by commercial 
organizations. In some products, there may be processes that are repeated hundreds or 
thousands of times, such as hole drilling, that would lend themselves to SPC. In addition, 
multiple measurements can be taken from a single part, such as with deviations from 
nominal of an outer mold line on a machined part. 

6.5.4.22 Use understood data. The statistical analysis of production data has 
been facilitated by many time and labor saving devices developed over the last few years. 
Most are in the form of computer software and automated gauges that do the necessary 
calculations for the operator. While these tools bring a powerful capability, they also create 
an opportunity for misapplication of data and confusion. Don’t assume that because a 
computer statistical package can take some data and provide an answer, that it is the right 
answer. There is one statistical principle that needs to be honored: Don’t use data that is 
not understood (Where did it come from? Is it normally distributed?). 

6.5.5 Process capabilities. The Cpk is calculated as follows: 
Cpk = Minimum [USL-Avg, Avg-LSL] / 3σ 

Where: 
USL = Upper Specification Limit 

LSL = Lower Specification Limit 

Avg = Process Mean 

3σ = three times the process standard deviation 

NOTE: The formula above and the guidance below are based on the assumption 
that the characteristic has an optimum value with specification limits on 
either side. For cases with a one-sided tolerance (For example, within the 
roundness of a bearing where 0.0 out of round is optimal and there is a 
maximum allowable deviation from 0.0) refer to statistical texts for more 
detailed information regarding appropriate sampling sizes for statistically 
determining valid Cpks and for information on the Cp index (which is less 
preferred than the Cpk index). 

6.5.5.1 Cpk Indications. Higher Cpk values indicate a more capable process, 
with a Cpk of 1.0 indicating that the process has either its upper 3-sigma variation or its 
lower 3-sigma variation at the specification limit (whichever is smaller), as shown on 
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FIGURE 7. Some companies consider a Cpk of 1.0 as “minimally capable.” A Cpk of less 
than 1.0 corresponds to a defect rate greater than three per thousand and it usually 
indicates an immature or incapable process that requires additional development, a design 
change, or added process verifications (such as inspections) to ensure conforming product 
is delivered. 

6.5.5.2 Cpk Variations. While there is usually no requirement for a process to 
be at a certain Cpk, “AS9103 - Variation Management of Key Characteristics,” defines 
processes with a Cpk of greater than 1.33 to be capable. A Cpk of 2.0 is considered to be 
highly capable. However, acceptable variation should be considered on a case-by-case 
basis based on statistically sound data and considering impacts on producibility, cost, and 
quality considerations. 

 
FIGURE 7. Capability index. 

6.5.6 Production process verification. Today's acquisition environment 
emphasizes the demonstration of producibility and manufacturing capabilities at each 
major program milestone, beginning early in the development phase. The purpose of 
validation is to provide a high degree of assurance that a specific process will consistently 
produce a product meeting its specifications. Process validation reduces risk by evaluating 
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both the direct and indirect infrastructure required prior to the start of actual production 
articles. Product validation is used to determine if the manufacturing processes will result 
in a product that conforms to all contract requirements for acceptance. Product validation 
is usually accomplished through First Article Testing, also referred to as First Article 
Inspections (FAIs) and analysis of manufacturing data.  

6.5.6.1 Product and process validation goals. Since quality cannot be 
inspected or tested into complex, finished products, the goal of the quality system is to 
control each step of the manufacturing process to ensure the final product meets all 
specification requirements. Product and process validation are key tools in determining if 
this goal is met. It is through careful design and validation of both the process and process 
controls that a manufacturer can establish a high degree of confidence that all products 
manufactured from successive lots will be acceptable. 

6.5.6.2 Guidance. AS6500 requires several related activities that are intended 
to validate that production processes (including direct and indirect infrastructure) will 
repeatedly produce products that meet requirements including cost and schedule. 

6.5.6.3 Manufacturing planning requirements. As a part of Manufacturing 
Planning, AS6500 requires M&S and a Manufacturing System Verification (MSV) effort. 
MSV is intended to be accomplished prior to production, as an analysis of the proposed 
production processes and infrastructure to determine if they are sufficient to meet 
requirements. If a production operation is already in place, actual data and experience from 
that line may be used for MSV. Since this manufacturing verification effort may be cost-
prohibitive, especially for larger, more complex parts, M&S may be used to support MSV 
analysis. 

6.5.6.4 Manufacturing Operations requirements. Within the Manufacturing 
Operations Management section, AS6500 requires both Production Process Verification 
(PPV) and First Article Inspections/Tests (FAIs/FATs). PPV is intended to be performed 
once actual products are being produced in a pilot line environment. Although AS9100C 
states PPV is often referred to as an FAI, in the context of AS6500, it has a larger purpose. 
The intent of PPV is to verify that the manufacturing processes are statistically capable of 
producing conforming parts. In other words, the purpose is similar to an MSV analysis, but 
PPV relies on actual data from products being produced. (MSV may only rely on M&S.) It 
may not be feasible to obtain enough data to be statistically significant. In those cases, 
thorough reviews of work instructions, process control plans, etc. along with estimates of 
the yields and capacities of each critical station will be needed to accomplish PPV. PPVs 
can also be performed on processes in place through use of coupons, samples, or similar 
features. For example, a plating line, or a powder coating line that is already in operation 
can verify the ability to produce coatings in spec for the new product about to be produced. 

6.5.6.5 First Article Inspections. First Article Inspections involve a detailed 
inspection of a single product that was built using verified production processes. FAIs also 
include reviews of in-process and acceptance testing procedures and results. FAIs should 
include auditing the process specifications, work instructions, inspection instructions, and 
test procedures to ensure they consistently reflect the engineering drawing requirements. 
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6.5.6.6 Conclusion. AS6500 requires M&S, MSV, and PPV to verify that the 
production processes (including the associated infrastructure) will meet program cost, 
schedule, and quality requirements. AS6500 requires FAIs/FATs to verify that the specific 
product meets all requirements. These activities are typically performed in the following 
order: 

M&S  MSV  PPV  FAI/FAT 

Based on the scale of the program, the scope and extent of these activities (especially M&S, 
MSV, and PPV) should be tailored to match the program needs. Go to AS9102, for additional 
information on FAI. 

6.5.7 First Article Inspections/First Article Tests. Since FAIs may be 
costly, they should not be performed on items that have significant design changes that 
have not yet been implemented. If only minor changes are anticipated, a full FAI may be 
accomplished and then a smaller, delta FAI could be done on only those features that 
changed. If an on-going production program begins to experience quality problems with 
delivered products, Hardware Quality Audits (HQAs) may be used to help “re-validate” 
the product and identify and correct some of the process problems. These teardown 
inspections are conducted on either in-process or completed production units selected at 
random. Like FAIs, HQAs can include an audit of the work instructions, inspection 
instructions, and test procedures to ensure they are still aligned with the drawing 
requirements. Historically, HQAs have been used with great success in identifying process 
quality problems. 

6.5.8 Supplier Management. 

6.5.8.1 Key supplier defined. A key supplier (including suppliers of 
Government Furnished Property (GFP) is a supplier at any level whose cost, schedule, or 
technical performance is essential to the development and production of an effective, 
affordable system. There are several criteria that can result in a supplier being deemed 
“key”. A key supplier (including a supplier of GFP) is a supplier at any level whose cost, 
schedule, or technical performance is essential to the development and production of an 
effective, affordable system. There are several criteria that can result in a supplier being 
deemed key:  

a. The requirements flow-down process, as shown on FIGURE 8, results in a 
supplier's "product characteristic" being essential to attaining the "system attribute 
requirement". 

b. A supplier is identified as "sole source" because of unique technologies or 
unique manufacturing capabilities. 

c. A supplier is “single source” due to limited funds or production quantities. 

d. Excessive risk, in cost or technical performance, with no low-risk alternative 
available. 
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FIGURE 8. Requirements flow-down terminology. 

6.5.8.2 Supplier role. Supplier performance becomes increasingly important as 
the percentage of weapon systems work performed at the supplier level continues to grow. 
Various studies have shown that, once a program reaches production, supplier activities 
typically account for more than 70% of the total production cost. Key suppliers are 
responsible for the full gamut of program activities involved in system acquisition. They 
perform design tasks, design trade studies, risk management, key product and process 
identification, and they further flow down authority to ensure that their performance 
allocations are met. For these reasons it is essential to integrate key suppliers into program 
planning and development as early as possible so they can participate in the allocation of 
requirements and design trades as well as resource sharing during the development and 
detailed design activities. 

6.5.8.3 Guidance. Supplier tasks must be fully integrated into the overall 
program plans and schedules and a plan should be developed which fully describes the 
supplier management effort. Successful supplier participation in the IPT process requires 
effective communication of the requirements and goals by the prime contractor. It is 
intended that requirement flow-down be based on a cooperative agreement. The prime 
should have an established system for key supplier selection that includes criteria for past 
performance, proven abilities demonstrated on similar programs, and assessment of 
supplier capabilities for the technology in question. The system also should address 
supplier implementation of the practices described in this guide. 

6.5.8.4 Incorporating GFP supplier activities and schedules. The supplier 
management plan prepared by the prime contractor is one way of incorporating key GFP 
supplier activities and schedules into the overall program plan. If an Associate Contractor 
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Agreement (ACA) is implemented on a program, the agreement must provide for the 
participation of key GFP contractors in arrangements and must allow adequate insight into 
key GFP contractor activities so they can be fully integrated into the Integrated Master 
Plan (IMP). (ACAs are agreements between contractors working on government contract 
projects that specify requirements for them to share information, data, technical 
knowledge, expertise, or resources.) If the contractor identifies a supplier of GFP as key 
and that supplier's contract with the government does not have adequate ACA 
requirements, the contractor needs to bring this to the attention of the government program 
office, who should affect the needed changes to the supplier's contract. 

6.5.8.5 Lessons learned. Programs that have not successfully integrated their 
key suppliers into the overall schedules and plans have commonly had difficulties in 
meeting their requirements and goals. Sometimes, the supplier base is neglected until the 
design is formalized, resulting in requirements not being met by suppliers who don’t have 
the capability to meet design requirements. In addition, the prime contractor may have 
little insight into supplier schedule slippage and other risk areas. Past performance data on 
supplier capabilities was often lacking or given less weight than cost in selection activities. 
Supplier performance lead times factored into overall program schedules have been overly 
optimistic without margin for delays.  

6.5.8.6 Supplier process audits. Weapon Systems have greatly increased in 
complexity over the last 30 years, and the rate of increase in complexity is accelerating. As 
system complexity increases, function elements of the system are becoming more complex 
and a greater number of critical processes are involved in making parts, components, and 
subsystems. With more components and critical processes come more suppliers. The 
length, breadth, and volume of the supply chain has also increased significantly. Finally, 
more DoD suppliers are also involved in commercial fabrication, dividing their attention 
between commercial customers and military contracts. This leads to a greater quality risk 
spread over a wider base of suppliers, leaving DoD with a very difficult management 
challenge. 

6.5.8.7 Quality of subcontracted parts. Assuring quality of subcontracted 
parts used to rely on common specs and standards, and there was less risk a supplier would 
misunderstand the specification or diverge from contract requirements. Today DoD often 
buys parts manufactured in the same factory as similar commercial parts. But the military 
may have tighter quality limits, more stringent processing standards, and longer life 
requirements given the serious nature of its mission. For example, if a chip on a personal 
cell phone fails after 100 hours, the phone can be thrown away and easily replaced. If the 
same chip, or a close cousin, fails on an F-35 avionics suite, the consequences could be 
catastrophic. 

6.5.8.8 Effects of substandard parts. The DoD and aerospace industry needs a 
way to make sure the critical components precisely follow the specs and process standards 
necessary to ensure requisite quality. The prime contractor usually has design authority, 
and it is their job to communicate specification requirements to the suppliers and to make 
sure the suppliers deliver parts of high quality. But this process sometimes breaks down, 
leaving the government-contractor team to deal with the significant challenge of what to 
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do with substandard parts that have already been delivered and installed onto weapon 
systems. When the supplier process failure doesn’t result in a visible, easily found defect, 
these parts are often spread throughout the system build process. In some particularly 
painful cases, the quality problems were not identified until discovered by the user during 
a repair cycle. Back checking through the supply chain uncovered the supplier deviated 
from the prescribed process months or years earlier, resulting in the great number of 
parts/systems effected. 

6.5.8.9 The need for audits. To prevent this situation, prime contractors, in 
conjunction with their government customers, should implement audits of critical 
processes at suppliers. These audits should focus on ensuring that processes are capable 
and are being followed and that quality escapes are prevented or caught and corrected 
before they expand to become a major program disaster. 

6.5.8.10 Quality audits. There are other quality audits conducted on supplier 
processes. For example, a Quality System Audit may be done by an outside certification 
team that is auditing to a standard, like AS9100 or ISO 9001. National Aerospace and 
Defense Contractors Accreditation Program (NADCAP) is also an example of an 
organization that certifies manufacturing processes. These audits are general, covering an 
entire factory or production site, and they do not focus in on special processes for military 
customers.  

6.5.8.11 Additional types of audits. There are also periodic process compliance 
audits, verifying compliance to quality procedures. These audits focus on how well the 
facility complies with the procedures they define in their AS9100 compliant quality 
system. The Supplier Process Audits discussed here are more product focused, with a 
limited scope. The other two audits described above can be viewed as large nets cast over 
the entire facility, necessitating a coarser less detailed review. A Supplier Process Audit is 
a finer detailed review only done on special processes in relation to specific parts critical to 
a system or product. 

6.5.8.12 Guidance. Positive verification of compliance with process 
specifications is a critical element of supplier quality assurance. This can take the form of 
a Supplier Process Audit. These audits should be performed periodically on suppliers who 
perform critical processes, especially processes that cannot easily be visually verified later 
in the build-up of the system. Heat treatment of a titanium structural part is one example. 
The proper conversion of the titanium grain structure is the result of time and temperature 
of the heat treat, and it takes a highly trained metals expert to verify it once the process is 
completed. However, an auditor watching the process as it is being completed can easily 
see if the threshold temperatures are reached and held for the minimum length of time. 

6.5.8.13 Importance of contract wording. Like other elements of 
Manufacturing and Quality, getting the right words on contract are critical to getting a 
program’s prime contractor to take action. In source selection, section L and M language 
should ask for a description of the prime contractor’s robust approach to proactively 
identify quality risks throughout the supply chain. The prime’s ability to identify critical 
parts, processes, and risk suppliers should be clearly expressed on contract, and a plan to 
audit these parts and processes at these suppliers is an appropriate part of the Quality Plan 
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and/or Systems Engineering Plan. The aggressiveness of the prime contractor in pursuing 
audits at critical suppliers, and steps they take to proactively manage quality risk 
throughout the supply chain, are good items for an Award Fee or Incentive Fee contracting 
approach. 

6.5.8.14 Lessons learned. Two critical elements of successful supplier process 
audits are team membership and the team’s onsite activity. Prime contractors have long 
had supplier certification audits, but these frequently involved a buyer or contracting 
officer and a QA specialist, who might not even see the parts involved. They may be 
simply performing a paper audit verifying requirements are documented in the Purchase 
Order. A good supplier process audit only starts with this PO flow down check. Supplier 
process audits will be performed because the process itself is critical, so in order to ensure 
the process is done properly, the audit team must include experts with process knowledge 
(for example, a metallurgist for heat treatment processes). Finally, the audit should 
culminate in the audit team physically watching a part being built by the process in 
question. Although this is similar to a First Article Inspection (FAI), supplier process 
audits differ in that they are performed periodically to ensure the process hasn’t gone off 
track. 

6.5.8.15 The need to audit suppliers. Many military systems are manufactured 
on commercial or near-commercial lines. Recent history is littered with programs that took 
a “hands-off” approach to these acquisitions, assuming that DoD could get good quality 
without paying for it with money or management attention. Supplier process audits may 
not be a normal part of contractors’ quality management systems, so the government 
customer should step up and require them contractually. Even without customer attention, 
prime contractors should ensure their quality systems include this activity and should raise 
the subject with their customers to ensure proper coordination. 

6.5.9 Supplier Quality. A basic quality management system compliant with 
industry standard ISO 9001 or AS9100 for airborne systems is foundational to producing 
products that meet contractual requirements. However, it is often necessary to implement 
tools and techniques that go beyond traditional quality management to ensure the final 
product meets user needs. Many of these tools and techniques are described within 
AS6500 and this handbook and focus on the development of stable and capable 
manufacturing processes. Some companies refer to these techniques as advanced quality 
systems or as defect prevention practices. For complex weapon systems, the combination 
of a robust, basic quality management system and the advanced quality/defect prevention 
practices are critical to successful program execution, and it is mandated under Federal 
Acquisition Regulation (FAR) Part 46.202-4. 

6.5.9.1 The need for a quality management system. An effective quality 
management system is required for operationally safe, suitable and effective weapon 
systems. The quality system ensures the as-delivered configuration is the same as the as-
designed and as-tested configuration. The quality system serves as the management and 
control function within the systems engineering process. It requires basic controls over 
requirements reviews, design inputs, verification and validation of design outputs, and 
control of design changes. It also requires monitoring and measuring of processes and 
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products to ensure they conform to requirements. An effective quality system is absolutely 
critical to ensuring the airworthiness of aircraft. The quality system must have sufficient 
controls in place to ensure that the delivered aircraft meets all of the requirements of the 
approved and qualified design. An aircraft that has a qualified design, but is delivered with 
defects is not a safe, airworthy aircraft.  

6.5.9.2 The need for contractual quality specifications. Commercial and 
commercial derivative aircraft rely upon Federal Aviation Administration (FAA) 
Production Certification (PC) for this assurance. Prime contractors obtain (and maintain) 
FAA (PCs) by demonstrating their quality controls are thorough and sufficient. DoD 
aircraft that are not built under the authority of a PC must rely upon the quality systems 
that are specified contractually, such as ISO 9001 or AS9100. The government and 
contractor team must ensure these systems and controls are effective and will always result 
in compliant products. Federal Aviation Regulations Part 21 (for commercial derivative 
aircraft) and AS9100 further define effective quality systems. 

6.5.9.3 Guidance. The Quality Management System (QMS) and any special 
tailoring requirements should be specified in the SOW. Program Management (both in the 
government and at the contractors) should identify the responsibilities and authority for 
ensuring that all elements of the QMS are documented, deployed, monitored, and 
measured to ensure they are effective. 

6.5.9.4 Cost of Quality (CoQ) defined. Where inspection systems have 
emphasized the detection of defects after the product has been produced, quality systems 
are designed to prevent the production of defective products. For this reason, quality 
managers should strive to understand and systematically reduce the overall Cost of Quality 
(CoQ) of items produced. CoQ is usually defined as the sum of “failure costs,” “appraisal 
costs,” and “prevention costs.” There are many different terms in use for this concept 
(including Total Cost of Quality, Cost of Poor Quality, and Total Quality Cost), with little 
consensus on the “correct” term. For example, the American Society of Quality often uses 
the term “Cost of Poor Quality” due to the negative connotation of “Cost of Quality.” 
However, many aerospace industry primes use “Cost of Poor Quality” to refer to only the 
“failure costs,” and “Cost of Quality” to capture failure, appraisal and prevention costs.  

6.5.9.5 CoQ focus to capture all quality cost. FIGURE 9 provides an 
overview of CoQ. The quality manager should not get hung up on the differences in 
terminology. Focus on understanding what term is appropriate to capture all the quality 
costs for a given contractor, and employ that term to drive the right behavior. Regardless 
of which term is used, Cost of Quality is used in this handbook, it is crucial to understand 
that CoQ captures many more costs than the traditional Scrap, Rework, and Repair (SRR) 
metric, also referred to as the Cost of Repair, Rework and Scrap (CoRRS). 
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FIGURE 9. Cost of Quality. 

6.5.9.6 CoRRS and CoQ compared. CoRRS typically captures only the touch 
labor associated with repair and rework, and the material replacement cost for scrapped 
items. CoQ also captures all of the “above the shop floor” and “hidden factory” costs, such 
as liaison, manufacturing, and design engineering, additional inspections and related 
quality assurance/metrology activities, Material Review Board (MRB) activities, 
procurement, among other costs. FIGURE 10 describes costs included in CoQ. CoQ/CoPQ 
“represents the difference between the actual cost of a product or service and what the 
reduced cost would be if there were no possibility of substandard service, failure of 
products, or defects in their manufacture.” In other words, any cost that would not have 
been expended if quality were perfect contributes to the cost of quality. So, even the costs 
associated with the forklift driver unloading the replacement material are included in CoQ. 
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FIGURE 10. CoQ inclusion. 

6.5.9.7 Why pursue CoQ. Clearly, CoQ is significantly greater than CoRRS 
(estimates range from three times to more than six times greater), but the reader may be 
wondering why it is even important to capture CoQ. Quite simply, the reason for 
identifying CoQ is to motivate better behavior, and drive a prevention-based quality 
culture. Many people within industry, including DoD employees, have become 
“comfortable” with a certain level of quality, believing that non-conformances should be 
expected based on system complexity and low production rates. As a result, there has been 
significant emphasis placed on the ability to detect and disposition defects, modest 
emphasis placed on eliminating defects through thorough root cause analysis and 
corrective action, and very limited emphasis on preventing defects from occurring in the 
first place. There is a prevailing view that CoRRS is relatively small and insignificant, 
especially when fixed price contracts are in place. However, CoQ is much larger than 
CoRRS with the costs compounded year after year, because inefficiencies associated with 
poor quality (including direct, indirect, overhead, G&A, and even profits) are recognized 
as actual and allowable, and thus form the basis (the starting point) for the next year’s 
negotiations. Identifying and segregating the actual CoQ should lead to more informed and 
rational decisions regarding improvement efforts, and motivate the organization to 
emphasize prevention over correction. The result of a prevention-based quality culture will 
be cheaper products, delivered in a timelier manner, with improved inherent quality and 
reliability. Those who say that the quality of our delivered products is high are right. The 
reason for pursuing CoQ is because we want to know how the high levels of quality were 
achieved. It is always faster, better and cheaper to build it right the first time. FIGURE 11 
shows some examples (not all-inclusive) of prevention, appraisal, and failure costs. 
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FIGURE 11. Examples of quality costs. 

6.5.9.8 CoQ goals. There will always be costs associated with delivering a 
product. However, the goals are to: 

1. shift the focus from detection and correction of failures to prevention of them, and 

2. drive systematic process improvements that yield overall CoQ reductions. 
FIGURE 12 illustrates CoQ shifts over time when using CPI. 

 
FIGURE 12. Cost of Quality shifts over time. 

6.5.9.9 CoQ addressed in contracts. Discovering the true CoQ of our products 
is not an easy endeavor. The quality manager will encounter significant pushback – 
certainly from industry, and quite possibly from within the Government. The reason is that 
costs associated with poor quality are a significant source of revenue, and the prime is not 
necessarily motivated to reduce such costs. Additionally, the systems and methods for 
collecting the various elements of CoQ may or may not be sufficiently mature. Although it 
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would be nice to identify costs at the defect tag level, collecting failure costs at that level 
and aggregating appraisal and prevention costs at a cumulative level is not a bad place to 
start. Of course, it all begins with the inclusion (and defense) of contract language 
requiring the identification and segregation of CoQ. If it’s not in the contract, it won’t get 
done! 

6.5.9.10 The new role of dedicated quality engineers. The responsibilities 
under a quality system may be implemented outside the traditional quality assurance 
organizational structure. Personnel in all functional areas (not just dedicated quality 
personnel) should be tasked with the responsibility for the quality of their own work and 
empowered to make key decisions affecting that work. Quality engineers, like 
manufacturing and producibility engineers, are key members of the IPT. They participate 
directly in every part of the program, from the early design phase through to production 
and support. Their role is to ensure an integrated, multi-functional approach to quality 
throughout the product life cycle. 

6.5.9.11 Effective quality management system features. Important features of 
an effective quality management system, such as AS9100C and ISO9001 include: 

a. management commitment to quality and a customer focus. 

b. a plan-do-check-act, closed loop, deployment process to ensure 
deployment/improvement plans are defined, executed, and effective. 

c. focus on processes at all levels and functions, within an organization and the 
interfaces between processes. Processes must be designed to meet customer requirements, 
to add value to the product, be measured and continually improved. 

d. control of design development, purchased products, and production processes 
and outputs. 

e. control of software programs deployed in manufacturing to prevent 
unauthorized changes. For example, Computer Aided Drafting (CAD) software, Computer 
Numerically Controlled (CNC) machining programs, measurement and test station 
programs.  

f. continual improvement, control of nonconforming products, root cause 
analyses, corrective and preventive actions. 

g. verification and validation of suppliers, personnel, processes, tests, and 
products are critical 

h. prevention methodologies must be supported throughout the program plan. 
(KCs, determinate assembly, and others are proven methodologies for accomplishment.) 

i. Measurement System Analysis is required for any method used to inspect, 
validate, or verify product or process. 

j. develop surveillance and audit plans that include a physical configuration audit 
for every aspect of the product build. 
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6.5.9.12 Industry specific quality requirements. In addition to the foundational 
ISO 9001, various industries have added unique requirements to this document. For 
example, the aerospace industry has created AS9100 to include unique requirements for 
the aerospace industry, such as key characteristics and prevention of Foreign Object 
Damage. When managing acquisition programs that are considered commercial, the 
quality manager must be aware of the FAA certification process and the oversight 
provided by the FAA. The quality manager must determine the extent to which FAA 
oversight meets the needs of the government, where gaps may exist, and how to cover 
those gaps. 

6.5.9.13 Lessons learned. Quality systems relying solely on inspection have 
often been proven to be ineffective in assuring the quality of the final product. In fact, the 
best that inspection based quality systems could hope to do was to identify all defective 
product that was produced and prevent its delivery to the customer. However, even 
100% inspection has been shown to be less than 100% effective in identifying all defects. 
Prototype and technology demonstration programs often try to take shortcuts in quality 
management systems. However, attention to details and process and product controls are 
just as important, if not more so, in dealing with complex, never-before-used technology. 
Many tests have failed due to improper use or assembly of a $0.99 part. 

6.5.9.14 Improving root cause analysis. Root cause analyses are typically the 
weakest part of a quality management system. Material Review Boards (MRBs), charged 
with finding the cause of a nonconformance, often jump to the obvious, simple solution. 
Variability Reduction and Six Sigma tools should be used to conduct a thorough analysis 
of data to properly determine the true root cause. 

6.5.9.15 Analyzing nonconformance. In addition, when the MRB dispositions 
the hardware, it must analyze the cumulative effects of all nonconformance. Engineers 
who disposition newly discovered non-conformances must be aware of all the previously 
identified non-conformances to determine their combined effects on both the part under 
consideration and the entire system. Numerous minor non-conformances may add up to be 
a major nonconformance. This is crucial and can be tied to the Unique Identification Data 
(UID) effort. Critical measurements and a history (like the car history reports from the 
VIN number) can give a background of the part and some information of surrounding 
parts. When a problem occurs, we always blame the “straw that broke the camel’s back”, 
when 99% of the tolerance was already consumed by another piece of the system or 
multiple pieces that were not at nominal. 
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6.6 Integrated Master Plan (IMP) Entry Criteria. The following are suggested 
manufacturing and quality entry criteria that should be accomplished prior to Integrated 
Master Plan events for major life cycle milestones and design reviews. They are intended as a 
starting point to identify significant activities and are not intended to be used in their entirety, 
nor are they intended to be all inclusive. They should be selected and tailored appropriately 
for the unique circumstances of each program. 

6.6.1 Milestone A (Approval to Begin Program): 
1. Preliminary production concepts identified. Preliminary cost partitioning of 

major assemblies accomplished. 

2. Preliminary production cost estimate documented, including ground rules, 
assumptions, and rationale. 

3. Materials lacking mature processes identified for manufacturing risk 
management purposes. 

4. IRAD and other programs established to reduce risk. 

5. Manufacturing capacity issues identified. 

6. Industrial base issues identified. 

7. Key technology teams and strategic business alliances initiated. 

8. Key supplier risk assessment performed and manufacturing risk mitigation 
planning initiated. 

9. Key supplier performance requirements flow-down and agreement 
established. 

6.6.2 Milestone B (Approval to Enter Development): 
1. Areas identified for producibility studies  

2. Initial cost estimates support program goals and cost risks and drivers are 
identified  

3. Preliminary production cost model (PCM) developed  

4. Plan developed for assessing manufacturing capabilities 

5. All risk reduction activities factored into program schedule and IMP. 

6. Industrial facilities and manpower requirements identified. 

7. Risk assessment and events/activities for key suppliers included in Integrated 
Master Plan. 

8. Simulations demonstrate ability to meet producibility and affordability goals. 
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6.6.3 Interim Event (corresponding to Preliminary Design Review): 
1. Preliminary Manufacturing and Quality Plans developed 

2. Initial Contractor Production Cost Model developed and under formal 
configuration control. 

3. Manufacturing Readiness Level Assessments conducted 

4. Risk abatement milestones included in IMP. 

5. Process capability database includes all key processes. 

6. Supplier capacity risks identified and included in risk management planning. 

7. Key suppliers identified and selected and subcontracts negotiated. 

8. Key supplier concurrence with requirements allocation and flow-down 
accomplished. 

9. Key supplier identification of preliminary key product characteristics. 

10. Identification of preliminary key product characteristics complete. 

11. Identification of preliminary key processes complete. 

12. Plan developed to verify and validate new processes. 

6.6.4 Interim Event (corresponding to Critical Design Review): 
1. Manufacturing and Quality Plans updated 

2. Process capabilities are adequate for product requirements for prime and 
subcontractors. 

3. Production cost estimates demonstrate cost objective is achievable 

4. Cost mitigation actions are being completed 

5. Producibility studies have been completed and recommendations are 
incorporated in the product design 

6. Simulations have been conducted to verify production plans, taking into 
account facility manpower, and process limitations 

7. Selection of production processes complete, including comparison of 
required process capabilities to documented capabilities. 

8. Manufacturing Readiness Level Assessments updated. 

9. Test article build plan complete. 

10. Key supplier detailed designs complete. 

11. Key supplier identification of key process parameters complete. 

12. Final key product characteristics determined. 

13. Final key production process parameters determined. 

14. VR Program plan is in place 
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15. Initial process control plans have been developed 

16. Process capability studies are being conducted with results fed back to 
product design. 

17. VR metric developed. 

18. All ST/STE scheduled for verification and validation before LRIP. 

19. Plan in place for conducting First Article Inspections and process proofing. 

6.6.5 Milestone C (Approval to Enter Production): 
1. Production cost estimates demonstrate production cost requirements are 

achievable with acceptable risk. 

2. Manufacturing Readiness Level Assessments conducted. 

3. Simulations verify and validate assembly processes prior to LRIP. 

4. All process control plans for critical processes have been developed and are 
in place. 

5. Final Build-to documentation complete, including identification of key 
characteristics and control plans for key characteristics. 

6. Process capability data is being collected on processes affecting KCs and is 
available to the IPTs 

7. Process stability and capability have been determined for key processes. For 
those with insufficient data, estimates of stability and capability have been 
made. 

8. Process improvements have been initiated for processes with unacceptable 
variation 

9. Metrics are used to measure the progress of the VR program  

10. All First Article Inspections and Process Proofing activities have been 
completed. Plans are in place to correct findings. 

11. Continuous collection and periodic review of production and quality data 
occurs to identify areas for improvement. 

12. Key supplier risk assessment and abatement planning complete and being 
implemented 

13. Verification/validation of key supplier process control and VR processes 
evaluated routinely 

14. Implementation initiatives focused on elimination of non-value-added 
activity and/or optimization of production cycle time (such as Lean 
Aerospace Initiative). 
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7. NOTES 

7.1 Intended use. 
This handbook provides guidance in the application of SAE AS6500 to DoD programs. 

7.2 Subject term (key word) listing. 
Critical Manufacturing Processes 

Factory Efficiency 

Key Characteristics 

Key Suppliers 

Manufacturing Readiness Levels 

Process Control 

Process Failure Modes Effects Analysis 

Process Validation 

Producibility 

Production Readiness Reviews 

Quality 

Quality Management System 

Statistical Process Control 

Supplier Management 

Supplier Process Audits 

Variability Reduction 

Virtual Manufacturing 

7.3 Changes from previous issue. 
Marginal notations are not used in this revision to identify changes with respect to the 
previous issue due to the extent of the changes. 
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	1. SCOPE.
	1.1 Scope. This handbook is applicable to all phases of DoD system acquisition. This handbook describes proven manufacturing management practices to promote delivery of affordable and capable weapon systems. This handbook provides standardized guidanc...
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	2.1 General. The documents listed below are not necessarily all of the documents referenced herein, but are those needed to understand the information provided by this handbook.
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	2.2.2 Other Government documents, drawings, and publications. The following Government documents, drawings, and publications form a part of this document to the extent specified herein.

	2.3 Non-Government publications. The following documents form a part of this document to the extent specified herein.

	3. DEFINITIONS
	4.  Introduction
	4.1 Purpose. The purpose of this handbook is to promote the timely development, production, and fielding of affordable and capable weapon systems by addressing manufacturing risks and issues throughout the program acquisition cycle. Its primary focus ...
	4.2 Statement of the problem. In the past, the goal of developing and deploying economically supportable weapon systems capable of meeting all functional user requirements has been proven difficult to achieve. Historically, two basic problems have bee...
	4.2.1 Difficulty in developing and producing new weapon systems, modifications, and upgrades in a timely and affordable manner. The difficulty in fielding mature systems in a timely and cost effective manner has been a persistent problem experienced i...
	4.2.2 Difficulty in smoothly transitioning an acquisition program from development to production and fielding supportable systems. Most modern acquisition programs have experienced problems in transitioning from development to production. Symptoms inc...
	4.2.3 Root cause. A major source of these problems is the lack of thorough consideration of the capability and stability of manufacturing processes to support production of weapon system products. This problem can be characterized with the following s...
	4.2.3.1 Inadequate response to production risk. Risk factors that pose production risk factors from the start of the program are caused by:
	4.2.3.2 Lack of attention to process capability. Risk factors during project development are due to:
	4.2.3.3 Lack of consideration of process control. Risk factors that occur during production are due to:


	4.3 Success criteria. To achieve the MIL-HDBK-896A purpose, the following success criteria and supporting practices should be applied.
	4.3.1 Balance product and process. Achieve balance in the consideration of product and process capability at the start of every phase of the acquisition process by:
	4.3.2 Balance product and process development. Achieve balance in the development of product and process during each phase of acquisition by:
	4.3.3 Define the development and manufacturing environment. Establish a development and manufacturing environment that implements the practices of key characteristics, process controls, variability reduction, and defect prevention by:

	4.4 Benefits. MIL-HDBK-896A practices represent a significant change in the way the defense industry operates. Achieving the full range of benefits available from the practices will require basic cultural changes on the part of all parties involved, f...
	4.5 Relationship to airworthiness certification. Airworthiness certification, as governed by MIL-HDBK-516, contains specific manufacturing and quality criteria that must be met to attain airworthiness certification. These criteria include identificati...
	4.6 Relationship of SAE AS6500 to Manufacturing Readiness Level (MRL) Criteria. Manufacturing Readiness Levels (MRLs) are used to assess manufacturing risk and readiness. They provide a common understanding of the relative maturity, identification, an...
	4.7 Relationship of Manufacturing Management to Systems Engineering Manufacturing management is closely linked to the systems engineering process in several ways. First, the manufacturing organization should provide representation to the design functi...
	4.7.1 Address manufacturing during Design Reviews. Manufacturing is also a key topic to be addressed during the Systems Engineering Technical Reviews. Specifically, manufacturing readiness should be assessed and reported during Preliminary and Critica...
	4.7.2 Include manufacturing management in the planning process. Manufacturing management should participate in the systems engineering planning process and contribute to systems engineering planning documents. The Systems Engineering Plan should inclu...
	4.7.3 Track and manage manufacturing risks. Finally, the program’s risk management process should include manufacturing risks, such as those identified through MRL assessments. Manufacturing risks should be tracked and managed using the same process a...


	5. ACQUISITION STRATEGY
	5.1 Financial considerations. Two financial issues are associated with implementation of the approaches recommended in this guide. The first is a change in development of funding profiles to support doing the right task at the right time. This funding...
	5.1.1 Funding requirements for development and production. One of the most important business issues related to the implementation of SAE AS6500 and the guidance of this handbook is how to properly fund programs using these requirements. Implementing ...
	5.1.2 Program funding comparison. In comparison to historic programs, programs that incorporate SAE AS6500 and the principles in this handbook require earlier funding, but the benefits of this earlier investment greatly reduce life cycle costs, includ...
	5.1.3 Cost estimating considerations.
	5.1.3.1 Development phase. Cost estimating considerations for the development phase must now consider the effects of the additional SAE AS6500 and MIL-HDBK-896A activity. The standard and handbook promote several acquisition approaches that require gr...
	5.1.3.2 Production phase. Production phase costs and cost estimating will also be affected by SAE AS6500 and MIL-HDBK-896A initiatives. Early investments in manufacturing development will produce significant cost savings in production. Specific areas ...
	5.1.3.3 First unit costs run high. Traditionally, first unit costs run high due to the significant amount of manufacturing and re-manufacturing needed to incorporate design changes. The use of modelling and simulation tools, prior to the fabrication a...


	5.2 Contracting considerations and request for proposal and  Statement of Work (SOW) inputs. To ensure the implementation of SAE AS6500, the customer (such as a DoD program office or prime contractor) must cite it as a contractual requirement. Althoug...
	5.2.1 Competitive purchases: The program office may determine that an offeror’s manufacturing management system may be a discriminating factor in the award of the contract. In that case, Section L of the RFP may include the following to instruct the o...
	5.2.2 Onsite survey inclusion. Since an onsite survey is a proven best practice during source selection, some programs may elect to add the following to Section L of the RFP:
	5.2.3 Proposal evaluation disclosure: Section M of the RFP should include the following statement to explain how the offerors’ proposals will be evaluated:

	5.3 Tailoring guidance for contractual application. SAE AS6500 requirements can be applied as either full conformance or tailored conformance. Full conformance means that all of the requirements of the standard have been, or are being satisfied. Tailo...
	5.3.1 General tailoring guidance. Consider the following items when applying SAE AS6500 contractually.
	5.3.2 Adapting SAE AS6500 to Maintenance, Repair, Overhaul (MRO) and Depot Activities. MRO operations are, essentially, manufacturing processes and share many of the same attributes as an OEM production line. MRO and depot functions include the induct...
	5.3.2.1 MRO lines benefit from SAE AS6500 planning tasks. Because of these similarities, MRO lines could benefit from many of the SAE AS6500 planning tasks, such as modeling and simulation, manufacturing system verification, and planning for tooling a...
	5.3.2.2 Supplier management at MRO and depot facility complications. Supplier management at MRO and depot facilities may be more complicated than what is typically experienced under an original production contract with a prime contractor responsible f...
	5.3.2.3 Addressing supplier management complications. If the MRO or depot function is being performed by a contractor, then SAE AS6500 can be placed on contract with the prime. It should be tailored appropriately, most likely by eliminating the Design...

	5.3.3 Adapting SAE AS6500 to limited production quantity programs. Limited production quantity programs can include space programs (launch vehicles, satellites, etc.) large ships and boats (aircraft carriers, submarines, etc.), and specialized aircraf...
	5.3.3.1 Do limited production operations really have to be planned to the same level of detail as with a typical production program? Just as with the MRO operations discussed above, limited production programs can benefit from both the planning and op...
	5.3.3.2 Tailoring SAE AS6500 for limited quantity programs. SAE AS6500 should be tailored to meet the unique circumstances of limited quantity programs. In some cases, certain requirements may not be applicable. In other cases, the requirements may be...


	5.4 Award fee inputs. The government program office may include an award fee as an incentive for the effective implementation of SAE AS6500. The following suggestions should be considered as starting points in developing award fee criteria. Once these...

	6. Requirements
	6.1 Manufacturing management system. SAE AS6500 requirements stipulate contractors should have an overall manufacturing management system that documents organizational responsibilities for each requirement in the standard. Refer to Section 6.4, Manufa...
	6.2 Design analysis for manufacturing.
	6.2.1 Producibility analysis. Producibility should be considered as a part of design trade studies. The role of design trade studies in the manufacturing development process is to achieve a product design that effectively balances the system design wi...
	6.2.1.1 Identify production processes and economic impacts. The design trade study process should identify alternative production processes and consider the economic impacts of each alternative. Tools such as Taguchi Loss Function, Design of Experimen...
	6.2.1.2 Use trade studies to assess producibility. Trade studies should be conducted to assess the producibility of as many design concepts as time and cost allows, with level of detail and accuracy dependent on the relative contribution of each conce...
	6.2.1.3 The cost of ignoring producibility issues. Programs that have not addressed producibility issues early in the product design and development cycle have experienced significant life-cycle cost increases due to lack of performance, excessive rew...
	6.2.1.4 Process capabilities. The manufacturing organization should communicate process capabilities to the design engineers so that tolerances can be determined based on the ability of the manufacturing processes to meet them. The manufacturing capab...
	6.2.1.5 Determinant Assembly is a producibility approach used to significantly reduce tooling and assembly costs. It relies on self-locating parts that have locating features directly on each mating part, as opposed to relying on expensive tools and f...
	6.2.1.6 Determine producibility effort targets. To determine where to target producibility efforts, assemblies can be evaluated using some or all of the following characteristics:
	6.2.1.7 Successes. Successful implementation of producibility initiatives for the cargo floor of a recent aircraft program replaced 22 extrusions with 8 machined parts, resulting in installation of 4,000 fewer fasteners and a net program savings of $8...
	6.2.1.8 Lessons Learned. The use of producibility and affordability engineering practices are most effective when they flow down to major/critical suppliers. Under performance-based specifications, the government relinquishes control of the detailed d...
	6.2.1.9 Producibility Improvement Programs (PIP). PIPs should be formally documented and the documentation must include the baseline (before implementation) costs and post implementation costs, as well as the non-recurring costs to implement the initi...
	6.2.1.10 Cost plus fixed fee on producibility efforts. One major DoD program found that producibility efforts should not be placed on a contract using a Firm Fixed Price option. Although an acceptable level of effort for producibility activities was n...
	6.2.1.11 Remain open to additional cost saving ideas. A program found return multiples (also known as Return on Investment) may approach 15 or 20 to 1, for initiatives implemented early in a program. As the program progresses through production, the r...
	6.2.1.12 Consider producibility early in the design process. Historically, efforts have relied on serial development between product and process. Almost all development emphasis was placed on system performance during pre-production. When the required...

	6.2.2 Key Characteristics (KCs) and processes. FIGURE 3 provides the definition of a KC. The identification of key product characteristics and key production process capabilities is a basic engineering task essential to successful manufacturing develo...
	6.2.2.1 Key Characteristics Function. The concept of identifying key characteristics is linked to the Pareto principle, which asserts that a relatively small number of features will have the most significant impact on performance. This principle enabl...
	6.2.2.2 Identification of KCs: Contractors have used a wide variety of approaches for identifying KCs. Subjective approaches, such as general discussions and consensus among design and manufacturing experts may be used. More objective and rigorous too...
	6.2.2.3 KCs and critical characteristics comparison. It is important to distinguish between Key Characteristics and Critical Characteristics. As defined in DOD-STD-2101 (Classification of Characteristics), a Critical Characteristic is one that “analys...
	6.2.2.4 Critical Characteristics (designated as Key Characteristics). This may be done to trigger the quality system to develop a process control plan and to institute variability reduction efforts. In some companies, the KC management process may be ...
	6.2.2.5 Lifespan of a KC. By definition, there should be relatively few KCs. Although there is no magic number that is universally applicable, each major part may have 1-3 KCs, and most simple parts (such as clips and brackets) should have none (altho...
	6.2.2.6 KC assessment. If KCs are identified for assembly characteristics (such as fit, gaps, etc.), then the design for the parts composing the assembly must be assessed to determine if KCs exist for each of those parts. Through this approach, higher...
	6.2.2.7 KC identification. KCs should be identified on drawings or in specifications. One method is to use a flag, as shown on FIGURE 4 which shows KCs relating to low observability properties. A unique identifying number or label should be assigned t...
	6.2.2.8 Mapping critical processes to KCs: Once identified, the team must determine which manufacturing processes create or significantly contribute to each KC. These processes are then termed critical processes. The contractor should maintain documen...
	6.2.2.9 Identify key process characteristics. For each critical process, the key process parameters (also known as key process characteristics) must be identified. Key process parameters are process inputs (such as temperature, time, pressure, etc.) t...
	6.2.2.10 KCs on avionics. The question frequently arises as to whether or not Key Characteristics can be applied to avionics items. When it comes to KCs on avionics, there are two general approaches. The first is to identify KCs on mechanical aspects ...
	6.2.2.11 Additional guidance. Additional guidance on Key Characteristics can be found in SAE’s aerospace standard SAE AS9103, “Variation Management of Key Characteristics.” This handbook and SAE AS6500 are intended to be consistent with SAE AS9103. SA...
	6.2.2.12 Lessons learned. The benefits gained from improved communication and coordination between various organizations, as a result of identifying KCs, cannot be overstated. Including cross-functional (and often cross-company) representatives at the...
	6.2.2.13 KC considerations. In one large aircraft program, engineers chose weight as a KC, not because it met the definition of a KC, but because they wanted a great deal of weight-related manufacturing data. Training of all IPT members is the key for...

	6.2.3 Process Failure Modes and Effects Analysis (PFMEA). Process Failure Modes and Effects Analyses (PFMEA) provide a structured risk based methodology for analyzing and preventing failures in manufacturing and assembly processes. The PFMEA is a proc...
	6.2.3.1 Early recognition. Timeliness of the analysis is important because it can be used to identify and eliminate failure modes before they are incorporated into a new production process. Alterations to the manufacturing process or improvements to t...
	6.2.3.2 PFMEA benefits. Conducting a PFMEA during process development permits early problem identification and resolution. This technique focuses on the prevention of non-conformance rather than detection. A thorough application of the PFMEA can ident...
	6.2.3.3 Guidance. Initiate PFMEA analysis as soon as product design has progressed far enough to initiate manufacturing process development. PFMEAs should be repeated/updated whenever there is a new process, a modification to an existing process, or w...
	6.2.3.4 Design Failure Modes and Effects Analyses (DFMEA). DFMEA is a design analysis technique used to identify potential problems with the product design and to eliminate or mitigate those problems before the design is finalized. PFMEAs are not inte...
	6.2.3.5 Failure Modes, Effects and Criticality Analysis (FMECA). Some literature on FMEAs includes a criticality analysis of each of the items and failure modes being analyzed to determine which are most important. If this analysis is conducted, the t...
	6.2.3.6 External guidance. Military standard methods for conducting a Failure Modes, Effects, and Criticality Analysis (FMECA) were detailed in MIL-STD-1629A. This MIL-STD was cancelled on August 4, 1998. The cancelled standard gave guidance to consul...
	6.2.3.7 Lessons learned. To be effective, the application of PFMEA must correspond with the nature of the process itself and ultimately each PFMEA is a uniquely performed analysis. Because it contains subjective measurements, it is not appropriate to ...


	6.3 Manufacturing Risk Identification
	6.3.1 Manufacturing Feasibility Assessments. Manufacturing Feasibility Assessments are typically performed early in the life cycle when competing design concepts are being considered. The assessments are conducted to identify potential manufacturing c...
	6.3.2 Manufacturing Readiness Level (MRL) Assessments. An excellent approach to identifying manufacturing risks is the Manufacturing Readiness Level Assessments. MRL Assessments were developed by OSD’s Joint Defense Manufacturing Technology Panel, and...
	6.3.2.1 Assessment of risk. Manufacturing readiness, like technology readiness, is critical to the successful introduction of new products and technologies. Manufacturing Readiness Levels (MRLs) represent a new and effective tool for the DoD S&T and a...
	6.3.2.2 MRL criteria. The criteria for Manufacturing Readiness Levels are organized into threads, such as Design, Materials, and Process Capability & Control. Many of the MRL criteria are closely tied to SAE AS6500. For example, MRL criteria address p...
	6.3.2.3 MRL Assessment benefits. In the defense acquisition environment, risk has often become an issue when the contractor/government acquisition team overestimates technology readiness, downplays potential transition to production problems, or fails...

	6.3.3 Production Readiness Reviews (PRRs). The program-level PRR is a Systems Engineering Technical Review at the end of EMD that determines if a program is ready for production. MRL 8 is the target for Low Rate Initial Production (LRIP) and MRL 9 is ...
	6.3.3.1 When to conduct PRRs. In the case of incremental acquisitions, PRRs should be conducted for each major increment. PRRs, or Production Assessment Reviews, should also be conducted whenever major changes to the production system warrant addition...
	6.3.3.2 MRL Assessments with PRRs. The assessment of manufacturing readiness should highlight any areas where an element or a key program-level manufacturing preparation area falls short of MRL 8/9 requirements; discuss the risks that these shortfalls...
	6.3.3.3 MRLs with PRRs. The MRL methodology may be used to assess the manufacturing, quality, and supplier management elements of a program. In addition, the scope of PRRs may include other functions, such as Test, Logistics, and Program Management.


	6.4 Manufacturing planning SAE AS6500 requires a manufacturing plan and lists the topics that should be addressed in the plan. Overall, the plan should describe how their manufacturing management system meets the intent and requirements of the standar...
	6.4.1 Supply Chain and Material Management
	6.4.1.1 Technology obsolescence and Diminishing Manufacturing Sources (DMS). Diminishing Manufacturing Sources and Material Shortages (DMSMS), the loss of sources of items or material, surfaces when a source announces the actual or impending discontin...
	6.4.1.2 Problem defined. Compared with the commercial electronics sector, the DoD is a minor consumer of electrical and electronic devices. The DoD is continuously seeking to prolong the life of its weapon systems. These trends cause DMSMS problems as...
	6.4.1.3 Guidance. Solving DMSMS is complex, data intensive, and expensive process. There are basically only two approaches to solving DMSMS in a system: reactive (address DMSMS problems after they surface) and proactive (identify and take steps to mit...
	6.4.1.4 Importance of an accurate BOM. It is critical to recognize the importance of an accurate Bill Of Material (BOM) in creating a proactive DMSMS program. The BOM is the indispensable data resource that enables proactive DMSMS management. Without ...
	6.4.1.5 Lessons learned. In some cases, commercial demand for materials or components that have historically been used only in defense systems can nearly push DoD out of the market. Two examples are Graphite Carbon Fiber composites used in low observa...
	6.4.1.6 Counterfeit part prevention. According to the General Accountability Office (GAO), the increase in counterfeit parts is one of several potential barriers the DoD faces in addressing part quality problems. They further acknowledge that counterf...
	6.4.1.7 Incentives for counterfeiting. Profit is the primary incentive for counterfeiting. However, there are unique conditions that make aerospace and defense products susceptible to counterfeiting, including a long life cycle and Diminishing Manufac...
	6.4.1.8 Guidance. A comprehensive counterfeit parts program must address, as a minimum, the following topics:
	6.4.1.9 Requirements. Effective contractual requirements are critical to focusing a program’s prime contractor to take the proper course of action. Develop requirement inputs to Requests for Proposals (RFPs) and Statements of Work/Statements of Object...
	6.4.1.10 Prevention. Potential preventative actions are listed below.
	6.4.1.11 Detection. Potential detection actions are listed below.
	6.4.1.12 Reporting. Potential reporting actions are listed below.

	6.4.2 Manufacturing technology development. Program offices should work with their respective service’s research lab for assistance with technology expertise, project management, and funding. The Manufacturing Readiness Levels of new technologies shou...
	6.4.3 Cost. Cost realism and credibility are primary concerns in a budget-constrained environment. Early, frequent, and increasingly accurate Production Cost Modeling (PCM) becomes extremely important. The PCM must be continuously refined as the desig...
	6.4.3.1 Guidance. The intent of PCM is to provide a tool for predicting and controlling design driven production costs. The PCM should also predict the production cost impacts of production rate and delivery schedule variations that are sure to occur ...
	6.4.3.2 Define specific parameters. For the contractor to develop a valid cost model, the government must define specific parameters in early development. These include variables such as constant versus then year dollars, production quantities and rat...
	6.4.3.3 Analysis procedure selection. Any appropriate analysis procedure may be used in developing the PCM (parametric, historical, analogy, or detailed engineering estimates) depending on data availability and the maturity of candidate designs. In mo...
	6.4.3.4 Modeling production costs. Accurately modeling production costs early in development is virtually impossible and there will always be an uncertainty interval associated with the resulting estimate. This uncertainty interval will be relatively ...
	6.4.3.5 Development and maintenance of the PCM is a team effort. The contractor and the government should make the development and maintenance of the PCM a joint goal. Each group should work together to define the overall architecture, input requireme...
	6.4.3.6 Lessons learned. Start early looking for cost reductions. Studies have repeatedly shown the best opportunities for system cost reduction occur during early program development phases. The early initiation of PCM supports cost reduction activit...
	6.4.3.7 Maintain PCM. To be effective and credible, the PCM must be maintained and kept current with all program ground rules and assumptions. Configuration control of joint PCM models must be explicitly documented. Specifically, both sides must agree...

	6.4.4 Manufacturing Modeling and Simulation (M&S) M&S addresses the properties and interactions among the materials, production processes, tooling, facilities, and personnel involved in a new product’s design and manufacture before the product and pro...
	6.4.4.1 Manufacturing cost. The cost associated with manufacturing generally decreases over time due to ongoing improvements in production methods and the experience gained by the workforce as they repeat assembly tasks. M&S accelerates this improveme...
	6.4.4.2 Simulations. Simulations can also be used to model new factory designs, such as during a Value Stream Analysis exercise. The planned version of the factory can be analyzed in a virtual environment for capacity, flow, transportation times, and ...
	6.4.4.3 Product design. Product design largely consists of repeated iterations of simple design-build-test-analyze cycles. Historically the build part of these cycles included construction of physical mock-ups. While these physical mock-ups allowed fo...
	6.4.4.4 Benefits of M&S. Using the electronic product model with various simulation tools also gives the producer the ability to extend the utility of M&S to include optimization of the factory production process. By simulating various factory layouts...
	6.4.4.5 Prototyping tools. Stereo Lithography Apparatus (SLA) and Selective Laser Sintering (SLS) have long been rapid prototyping tools that provide sub-scale or full-scale physical models directly from CAD designs. 3D Printing and Additive Manufactu...
	6.4.4.6 Guidance. Virtual manufacturing simulations should be integrated with CAD tools, MRP, scheduling tools, time standards, work instructions, and planning. Virtual tools can address different levels of manufacturing processes, including:
	6.4.4.7 Lessons learned. The ability to assess manufacturing capabilities in a synthetic environment early in the design process has contributed to lower total costs, reduced technical and schedule risk in the transition to production, and increased c...
	6.4.4.8 Develop data beyond preliminary design. A basic type simulation allowed a major engine program to correct a supply chain issue at a vendor which was being blamed for late deliveries and capacity issues. The simulation pointed to delivery of ma...

	6.4.5 Manufacturing System Verification. Refer to Section 6.5.6 Production process verification for detailed information about manufacturing system verification and how it relates to similar activities.
	6.4.6 Manufacturing Workforce. The contractor’s anticipated workforce needs (both in numbers and skills) should be evaluated as part of MRL assessments and PRRs. the manpower required for a given program should be compared with projected requirements ...
	6.4.7 Tooling / test equipment / facilities. Tooling and test equipment can be major cost and risk drivers and must be addressed in the considerations of alternatives. If new/unique tooling and/or test equipment is required, the program office will ne...
	6.4.7.1 Establishment of tooling and test equipment. Programs need to establish their tooling and test equipment concepts and determine if they need to develop new/unique tooling and test equipment early in product development. If new/unique tooling a...
	6.4.7.2 Equipment use. Once the tooling and test equipment requirements are established, the equipment should be built and used as early as possible in a production representative or pilot line environment. The rate capability and yield rates of EMD t...
	6.4.7.3 Program manager role. Program managers must plan for the preservation and storage of special tooling, which includes jigs, dies, fixtures, molds, patterns, taps, and gages which are of such a specialized nature that without modification or alt...


	6.5 Manufacturing operations management
	6.5.1 Production scheduling and control. To obtain insight into a contractor’s production control system, a program office may request on-line access to the contractor’s system or, as a minimum, to any metrics generated by the system. As an independen...
	6.5.2 Manufacturing Surveillance
	6.5.2.1 Factory performance data. In the current acquisition environment, submission of factory performance data is usually not a contractual requirement. Not having insight into this data, however, means blinding the government to a contractor’s real...

	6.5.3 Continuous Improvement. A key element of continuous improvement is the elimination of waste. Waste can come from overproduction, waiting time, transportation, processing, inventory, excess motion, and product defects. The following ideas and too...
	6.5.3.1 Work measurement program. To measure the progress and success in becoming more efficient, companies must select appropriate metrics. Some form of a work measurement program is needed to develop labor standards that quantify the amount of time ...
	6.5.3.2 Lessons learned. Many companies fall into two common traps. The first is to (correctly) “prototype” the implementation of lean in a limited area or production cell. However, even though the area may show tremendous improvement, the company doe...

	6.5.4 Process control plans. Variability Reduction (VR) is a systematic approach to improve product performance, reliability, cost, and reduce manufacturing span times by reducing variation in key product characteristics and the processes that create ...
	6.5.4.1 Data analysis. As development progresses and developmental units are being built, more process data becomes available. This data must first be analyzed for applicability, given potential design and process changes. When the data is deemed acce...
	6.5.4.2 Process improvement. Production phase variability reduction (VR) efforts are primarily concerned with addressing capability shortfalls with special variability reduction efforts, and maintaining an environment of continuous improvement in prod...
	6.5.4.3 Conclusion. VR is based on the concept that simply attaining specification limits (also known as a “goal-post mentality”) is not the best measure of quality. Rather, the degree of variability inherent in a key process and its relationship to d...
	6.5.4.4 Benefits. By reducing and controlling hardware variability, the customers and suppliers can realize many benefits, including:
	6.5.4.5 Guidance. FIGURE 6 shows the sequence of activities for a Variability Reduction Program.
	6.5.4.6 Determine KCs. Two aspects of variability reduction affect the design of characteristics that have been identified as key.
	6.5.4.7 Develop process control plans. For each critical process related to a KC, the contractor should document plans to control the process to ensure KC variation is, at a minimum, within spec, and as a goal, reduced as much as feasible. These proce...
	6.5.4.8 Collect and chart data. Data should be collected in accordance with the process control plan. Early in development when few items are produced, short-run techniques must be used to analyze data to make statistically significant observations. O...
	6.5.4.9 Initial variation acceptability. To determine acceptability, you must calculate the process capability index (Cpk), following the guidance in 6.5.5 Process capabilities.
	6.5.4.10 Adjust inspection frequency. If process variation is acceptable, inspections may be reduced. Once the process has demonstrated capability and control, certified operators may be allowed to rely on Statistical Process Control (SPC) charting to...
	6.5.4.11 Identify and control key sources of variation. If initial variation is not acceptable, the team must identify the sources of variation, both the common and special causes. Special cause variation is variation that is not inherent to a process...
	6.5.4.12 Understand the process. Whether variation in a process is special cause or common, it is necessary to gain a complete understanding of the process itself in order to identify and control sources of variation. For this reason, many variability...
	6.5.4.13 Variation acceptability. If the variation is still not acceptable after special causes have been eliminated and common causes controlled to the extent possible, other actions must be taken. In some cases, it might not be economically feasible...
	6.5.4.14 Examine redesign to eliminate KC. The preferred option is to redesign the product to eliminate the sensitivity of the design to the key characteristic; the characteristic may still exist, but the design is more robust so that it is no longer ...
	6.5.4.15 Adjust process control plan. If process variation is still not acceptable, additional controls (such as inspection) may be added to ensure that only conforming product is delivered to the next step in the process. However, many years of exper...
	6.5.4.16 Additional guidance. One method of contractually implementing KCs and VR is to include AS9103 in the SOW.
	6.5.4.17 Measurement Systems Analysis. Since data and decision making go hand-in-hand, the quality of the measurements from which the data is derived is very important. Factors like measurement selection, calibration, and gage repeatability and reprod...
	6.5.4.18 Additional guidance. Additional guidance on Measurement System Analysis, which is a significant part of variability reduction, and can be obtained in Section 8 of AS9100, ASTM E2783, and the AIAG Measurement Systems Analysis Manual.
	6.5.4.19 Lessons learned. It is easy to lose the focus on processes and instead focus on product. Since key characteristics are naturally product related, there is a tendency to gather data on a part number by part number basis, losing sight of the fa...
	6.5.4.20 Measure success by results. Although there are almost as many ways to do Variability Reduction as there are contractors and subcontractors, the principles of each methodology should begin with the goal of reducing quality costs and the philos...
	6.5.4.21 SPC short run application. Some manufacturers in DoD avoid using SPC because of low quantities and the belief that it is only applicable to large production runs. However, there are many short run SPC techniques developed by commercial organi...
	6.5.4.22 Use understood data. The statistical analysis of production data has been facilitated by many time and labor saving devices developed over the last few years. Most are in the form of computer software and automated gauges that do the necessar...

	6.5.5 Process capabilities. The Cpk is calculated as follows:
	6.5.5.1 Cpk Indications. Higher Cpk values indicate a more capable process, with a Cpk of 1.0 indicating that the process has either its upper 3-sigma variation or its lower 3-sigma variation at the specification limit (whichever is smaller), as shown...
	6.5.5.2 Cpk Variations. While there is usually no requirement for a process to be at a certain Cpk, “AS9103 - Variation Management of Key Characteristics,” defines processes with a Cpk of greater than 1.33 to be capable. A Cpk of 2.0 is considered to ...

	6.5.6 Production process verification. Today's acquisition environment emphasizes the demonstration of producibility and manufacturing capabilities at each major program milestone, beginning early in the development phase. The purpose of validation is...
	6.5.6.1 Product and process validation goals. Since quality cannot be inspected or tested into complex, finished products, the goal of the quality system is to control each step of the manufacturing process to ensure the final product meets all specif...
	6.5.6.2 Guidance. AS6500 requires several related activities that are intended to validate that production processes (including direct and indirect infrastructure) will repeatedly produce products that meet requirements including cost and schedule.
	6.5.6.3 Manufacturing planning requirements. As a part of Manufacturing Planning, AS6500 requires M&S and a Manufacturing System Verification (MSV) effort. MSV is intended to be accomplished prior to production, as an analysis of the proposed producti...
	6.5.6.4 Manufacturing Operations requirements. Within the Manufacturing Operations Management section, AS6500 requires both Production Process Verification (PPV) and First Article Inspections/Tests (FAIs/FATs). PPV is intended to be performed once act...
	6.5.6.5 First Article Inspections. First Article Inspections involve a detailed inspection of a single product that was built using verified production processes. FAIs also include reviews of in-process and acceptance testing procedures and results. F...
	6.5.6.6 Conclusion. AS6500 requires M&S, MSV, and PPV to verify that the production processes (including the associated infrastructure) will meet program cost, schedule, and quality requirements. AS6500 requires FAIs/FATs to verify that the specific p...

	6.5.7 First Article Inspections/First Article Tests. Since FAIs may be costly, they should not be performed on items that have significant design changes that have not yet been implemented. If only minor changes are anticipated, a full FAI may be acco...
	6.5.8 Supplier Management.
	6.5.8.1 Key supplier defined. A key supplier (including suppliers of Government Furnished Property (GFP) is a supplier at any level whose cost, schedule, or technical performance is essential to the development and production of an effective, affordab...
	6.5.8.2 Supplier role. Supplier performance becomes increasingly important as the percentage of weapon systems work performed at the supplier level continues to grow. Various studies have shown that, once a program reaches production, supplier activit...
	6.5.8.3 Guidance. Supplier tasks must be fully integrated into the overall program plans and schedules and a plan should be developed which fully describes the supplier management effort. Successful supplier participation in the IPT process requires e...
	6.5.8.4 Incorporating GFP supplier activities and schedules. The supplier management plan prepared by the prime contractor is one way of incorporating key GFP supplier activities and schedules into the overall program plan. If an Associate Contractor ...
	6.5.8.5 Lessons learned. Programs that have not successfully integrated their key suppliers into the overall schedules and plans have commonly had difficulties in meeting their requirements and goals. Sometimes, the supplier base is neglected until th...
	6.5.8.6 Supplier process audits. Weapon Systems have greatly increased in complexity over the last 30 years, and the rate of increase in complexity is accelerating. As system complexity increases, function elements of the system are becoming more comp...
	6.5.8.7 Quality of subcontracted parts. Assuring quality of subcontracted parts used to rely on common specs and standards, and there was less risk a supplier would misunderstand the specification or diverge from contract requirements. Today DoD often...
	6.5.8.8 Effects of substandard parts. The DoD and aerospace industry needs a way to make sure the critical components precisely follow the specs and process standards necessary to ensure requisite quality. The prime contractor usually has design autho...
	6.5.8.9 The need for audits. To prevent this situation, prime contractors, in conjunction with their government customers, should implement audits of critical processes at suppliers. These audits should focus on ensuring that processes are capable and...
	6.5.8.10 Quality audits. There are other quality audits conducted on supplier processes. For example, a Quality System Audit may be done by an outside certification team that is auditing to a standard, like AS9100 or ISO 9001. National Aerospace and D...
	6.5.8.11 Additional types of audits. There are also periodic process compliance audits, verifying compliance to quality procedures. These audits focus on how well the facility complies with the procedures they define in their AS9100 compliant quality ...
	6.5.8.12 Guidance. Positive verification of compliance with process specifications is a critical element of supplier quality assurance. This can take the form of a Supplier Process Audit. These audits should be performed periodically on suppliers who ...
	6.5.8.13 Importance of contract wording. Like other elements of Manufacturing and Quality, getting the right words on contract are critical to getting a program’s prime contractor to take action. In source selection, section L and M language should as...
	6.5.8.14 Lessons learned. Two critical elements of successful supplier process audits are team membership and the team’s onsite activity. Prime contractors have long had supplier certification audits, but these frequently involved a buyer or contracti...
	6.5.8.15 The need to audit suppliers. Many military systems are manufactured on commercial or near-commercial lines. Recent history is littered with programs that took a “hands-off” approach to these acquisitions, assuming that DoD could get good qual...

	6.5.9 Supplier Quality. A basic quality management system compliant with industry standard ISO 9001 or AS9100 for airborne systems is foundational to producing products that meet contractual requirements. However, it is often necessary to implement to...
	6.5.9.1 The need for a quality management system. An effective quality management system is required for operationally safe, suitable and effective weapon systems. The quality system ensures the as-delivered configuration is the same as the as-designe...
	6.5.9.2 The need for contractual quality specifications. Commercial and commercial derivative aircraft rely upon Federal Aviation Administration (FAA) Production Certification (PC) for this assurance. Prime contractors obtain (and maintain) FAA (PCs) ...
	6.5.9.3 Guidance. The Quality Management System (QMS) and any special tailoring requirements should be specified in the SOW. Program Management (both in the government and at the contractors) should identify the responsibilities and authority for ensu...
	6.5.9.4 Cost of Quality (CoQ) defined. Where inspection systems have emphasized the detection of defects after the product has been produced, quality systems are designed to prevent the production of defective products. For this reason, quality manage...
	6.5.9.5 CoQ focus to capture all quality cost. Figure 9 provides an overview of CoQ. The quality manager should not get hung up on the differences in terminology. Focus on understanding what term is appropriate to capture all the quality costs for a g...
	6.5.9.6 CoRRS and CoQ compared. CoRRS typically captures only the touch labor associated with repair and rework, and the material replacement cost for scrapped items. CoQ also captures all of the “above the shop floor” and “hidden factory” costs, such...
	6.5.9.7 Why pursue CoQ. Clearly, CoQ is significantly greater than CoRRS (estimates range from three times to more than six times greater), but the reader may be wondering why it is even important to capture CoQ. Quite simply, the reason for identifyi...
	6.5.9.8 CoQ goals. There will always be costs associated with delivering a product. However, the goals are to:
	6.5.9.9 CoQ addressed in contracts. Discovering the true CoQ of our products is not an easy endeavor. The quality manager will encounter significant pushback – certainly from industry, and quite possibly from within the Government. The reason is that ...
	6.5.9.10 The new role of dedicated quality engineers. The responsibilities under a quality system may be implemented outside the traditional quality assurance organizational structure. Personnel in all functional areas (not just dedicated quality pers...
	6.5.9.11 Effective quality management system features. Important features of an effective quality management system, such as AS9100C and ISO9001 include:
	6.5.9.12 Industry specific quality requirements. In addition to the foundational ISO 9001, various industries have added unique requirements to this document. For example, the aerospace industry has created AS9100 to include unique requirements for th...
	6.5.9.13 Lessons learned. Quality systems relying solely on inspection have often been proven to be ineffective in assuring the quality of the final product. In fact, the best that inspection based quality systems could hope to do was to identify all ...
	6.5.9.14 Improving root cause analysis. Root cause analyses are typically the weakest part of a quality management system. Material Review Boards (MRBs), charged with finding the cause of a nonconformance, often jump to the obvious, simple solution. V...
	6.5.9.15 Analyzing nonconformance. In addition, when the MRB dispositions the hardware, it must analyze the cumulative effects of all nonconformance. Engineers who disposition newly discovered non-conformances must be aware of all the previously ident...


	6.6 Integrated Master Plan (IMP) Entry Criteria. The following are suggested manufacturing and quality entry criteria that should be accomplished prior to Integrated Master Plan events for major life cycle milestones and design reviews. They are inten...
	6.6.1 Milestone A (Approval to Begin Program):
	6.6.2 Milestone B (Approval to Enter Development):
	6.6.3 Interim Event (corresponding to Preliminary Design Review):
	6.6.4 Interim Event (corresponding to Critical Design Review):
	6.6.5 Milestone C (Approval to Enter Production):
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